Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D
Cm: a) Xét t/giác ABD và t/giác ACD
có: AB = AC (Gt)
\(\widehat{BAD}=\widehat{CAD}\) (gt)
AD : chung
=> t/giác ABD = t/giác ACD (c.g.c)
b) ta có: t/giác ABD = t/giác ACD (cmt)
=> \(\widehat{B}=\widehat{C}\) (2 góc t/ứng)
A B C D
Vì AD là phân giác của góc BAC nên \(BAD=CAD=\frac{BAC}{2}\)
Xét Δ CAD và Δ BAD có:
AC = AB (gt)
CAD = BAD (cmt)
AD là cạnh chung
Do đó, Δ CAD = Δ BAD (c.g.c)
=> ADC = ADB (2 góc tương ứng)
Mà ADC + ADB = 180o (kề bù) nên ADC = ADB = 90o
=> \(AD\perp BC\left(đpcm\right)\)
Mình không biết vẽ hình, sorry.
a) Xét tam giác ABD và tam giác ACD có :
AB=AC (GT)
góc BAD= góc CAD (GT)
AD là cạnh chung
=> tam giác ABD = tam giác ACD (c.g.c)
b) Ta có: tam giác ABD= tam giác ACD (chứng minh trên)=> góc B= góc C (2 góc tương ứng ).
A B C M 1 2 1 2
A)TA CÓ AB =AC
\(\Rightarrow\Delta ABC\)CÂN TẠI A
\(\Rightarrow\widehat{B}=\widehat{C}\)
XÉT \(\Delta AMB\)VÀ \(\Delta AMC\)CÓ
\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
\(AB=AC\left(GT\right)\)
\(\widehat{B}=\widehat{C}\left(CMT\right)\)
\(\Rightarrow\Delta AMB=\Delta AMC\left(G-C-G\right)\)
B)VÌ \(\Delta AMB=\Delta AMC\left(G-C-G\right)\left(CMT\right)\)
\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)(HAI CẠNH TƯƠNG ỨNG)
MÀ\(\widehat{M}_1+\widehat{M}_2=180^o\left(KB\right)\)
THAY\(\widehat{M}_2+\widehat{M}_2=180^o\)
\(2\widehat{M}_2=180^o\)
\(\widehat{M}_2=\frac{180^o}{2}=90^o\)
\(\Rightarrow AM\perp BC\)
C) \(\Delta AMB=\Delta AMC\left(G-C-G\right)\left(CMT\right)\)
=> BM=CM (HAI CẠNH TƯƠNG ỨNG)
=> M LÀ TRUNG ĐIỂM CỦA BC
\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAD}=\widehat{CAD}\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\\ b,\Delta ABD=\Delta ACD\Rightarrow\widehat{B}=\widehat{C}\)
Cm: a) Xét t/giác ABD và t/giác ACD
có: AB = AC (Gt)
ˆBAD=ˆCADBAD^=CAD^ (gt)
AD : chung
=> t/giác ABD = t/giác ACD (c.g.c)
b) ta có: t/giác ABD = t/giác ACD (cmt)
=> ˆB=ˆCB^=C^ (2 góc t/ứng)
thế nha