Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác cân DEF . đường phân giác DM ,từ M kẻ MQ vuông góc DE,MR vuông góc DF. Chứng minh MQ=MR
Xét ΔDQM vuông tại Q và ΔDRM vuông tại R có
DM chung
\(\widehat{QDM}=\widehat{RDM}\)
Do đó: ΔDQM=ΔDRM
Suy ra: MQ=MR
Xét tam giác vuông DQM và tam giác vuông DRM, có:
DM: cạnh chung
góc QDM = góc RDM ( gt )
Vậy tam giác vuông DQM = tam giác vuông DRM ( cạnh huyền.góc nhọn)
=> MQ = MR ( 2 cạnh tương ứng )
bạn tự vẽ hình nha!Nên sửa DQEF thành DQEP.
a,tứ giác DQEP có:ME=MD,MQ=MP nên DQEP là hình bình hành.
Lại có:DE vuông góc với QP nên hình bình hành DQEP là hình thoi.
b,DQEP là hình thoi nên EP song song với DQ mà FK song song với PE nên DQ song song với FK(1)
Lại có:DF và QK cùng vuông góc với DM nên DF song song với QK(2).
Từ (1) và (2) suy ra DFKQ là hình bình hành
AD là phân giác của ∠BAC
=> ∠DAE = ∠DAF = ∠BAC = 60⁰
△DAE = △DAF (trường hợp cạnh huyền cạnh góc vuông)
=> DE = DF
=> △DEF cân ở D
△ADE vuông ở E => ∠EAD + ∠EDA = 90⁰
=> ∠EDA = 30⁰
tương tự ∠FDA = 30⁰
=> ∠FDE = 60⁰
=> △DEF đều
b, △DEI và △DFK có
DE = DF
∠DEI = ∠DFK = 90⁰
EI = FK
=> △DEI = △DFK
=> DI = DK
=> △DIK cân ở D
c, ∠BAC + ∠MAC = 180⁰ (kề bù)
=> ∠MAC = 180⁰ - 120⁰ = 60⁰
AD//MC => ∠MCA = ∠CAD = 60⁰
=> △ACM đều
tính AD
***c/m : trong tam giác vuông có góc 60⁰ thì cạnh góc vuông kề với góc đó bằng nửa cạnh huyền
thật vậy
xét trong △ABC vuông ở A có ∠ACB = 60⁰
gọi E là trung điểm của BC
trên tia đối của tia EA lấy D sao cho AE = ED
xét △ABE và △DCE có
BE = CE
∠AEB = ∠DEC (đối đỉnh)
AE = DE
=> △ABE = △DCE
=> ∠ABE = ∠DCE và AB = CD
=> AB//CD
=> CD ┴ AC
△BAC = △DCA (cgc)
=> BC = DA
=> AE = BC/2 = EC
=> △AEC cân ở E
∠ACE = 60⁰
=> △AEC đều
=> AC = AE = BC/2
=> đpc/m
***áp dụng bài toán trên => AF = AD/2
△AMC đều => AC = MC = m
=> AF = AC - CF = m - n
=> AD = 2(m - n)
a/ Xét tứ giác DPMQ có
\(\widehat{EDF}=\widehat{MQD}=\widehat{MPD}=90^o\)
=> Tứ giác DPMQ là hcn
b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF
c/ Có I đx M qua DE
=> DE là đường t/trực của IM
=> DI = DM (1)
=> t/g DIM cân tại D có DE là đường trung trực
=> DE đồng thời là đường pg
=> \(\widehat{IDE}=\widehat{EDM}\) (2)
CMTT : DM = DK (3) ; \(\widehat{KDF}=\widehat{FDM}\) (4)
Từ (2) ; (4)
=> \(\widehat{IDE}+\widehat{EDF}+\widehat{KDF}=\widehat{IDK}=180^o\)
=> I,D,K thẳng hàng
Từ (1) ; (3)=> ID = DK
Do đó D là trđ IK
=> I đx K qua D
a) Xét tứ giác AKMQ có:
+ ^KAG = 90o (Tam giác ABC vuông tại A).
+ ^AKM = 90o (MK vuông góc AB).
+ ^AGM = 90o (MG vuông góc AC).
=> Tứ giác AKMQ là hình chữ nhật (dhnb).
ABCDEMNEFIa,Ta có ΔABC cân ở góc A => góc ABC=góc ACB =180(độ)−BAC2(1)
Ta có BD=CE(gt);AB=AC(gt)
mà AB+BD=AD và AC+CE=AE
=> AD=AE
=>ΔADE cân tại A ( Có hai góc bằng nhau)
=>góc ADE= góc AED=(180 độ - DAE) :2 (2)
Từ (1) và (2) => góc ABC= góc ADE=góc ACB=góc AED
mà góc ABC và góc ADE ở vị trí đồng vị
=>BC // DE(đpcm)
b)ta có góc ABC= góc MBD (đối đỉnh )
góc ACB= góc NCE( đối đỉnh )
mà Góc ABC=Góc ACB => góc MBD= góc NCE
Xét hai tam giác vuông ΔBMD và ΔCNE
có BD=CE (gt)
góc MBD= góc NCE (c/m trên)
=>ΔBMD=ΔCNE(Cạnh huyền - Góc nhọn)
=> DM=EN(Hai cạnh tương ứng)
c) Gọi giao điểm của AM và BI là E
giao điểm của AN và CI là F
Vì ΔBMD=ΔCNE( chứng minh trên ) =>BM=CN( Hai cạnh tương ứng)
Ta có : Góc ABC= Góc ACB ( gt)
mà Góc ABC + Góc ABM=180 độ ( kề bù)
và Góc ACB+góc ACN= 180 độ ( kề bù)
=>Góc ABM=góc ACN
Xét ΔABM VÀ ΔACN có:
AB=AC(gt)
Góc ABM=Góc ACN(cmt)
BM=CM ( cmt)
=> ΔABM=ΔACN(c−g−c)
=> Góc AMB=Góc ANC (hai góc tương ứng )
=> ΔAMN Cân ở A ( có hai góc bằng nhau) (đpcm)
D,(hơi dài )
ta có tam giác AMN cân ở A=> AM=AN( hai cạnh bên) (3)
Xét hai tam giác vuông Tam giác EMB và tam giác FCN có:
Góc EMB=góc FNC (cmt)
MB=CN(cmt)
=> tam giác EMB= tam giác FNC ( cạnh huyền -góc nhọn)
=>EM=FN(hai cạnh tương ứng ) (4)
Ta có (3) (4) mà AE+EM=AM và AF+FN=AN
=> AE=AF
Xét hai tam giác vuông tam giác AEI và tam giác AFI có
AI cạnh chung
AE=AF(cmt)
=> tam giác AEI = Tam giác AFI (cạnh huyền-cạnh góc vuông)
=>Góc AIE=Góc AIF( góc tương ứng ) (10)
ta có góc EBM+MBD=góc EBD= góc ABI (đối đỉnh)(5)
góc FCN+NCE= Góc FCE= góc ACI( đối đỉnh )(6)
mà góc EBM= góc FCN (cmt)(7)
góc MDB=góc NCE(gt) (8)
từ (5)(6)(7)(8)=> góc ABI = góc ACI (9)
từ (9) (10)=> góc BAI=góc CAI ( tổng 3 góc của một tam giác ) (đpcm)
Chúc bạn học giỏi nha Thiên Yết >.<
Trả lời:
D E F M Q R 1 2
Xét tg DQM vuông tại Q và tg DRM vuông tại R có:
DM chung
^D1 = ^D2 (DM là tia pg của ^EDF)
=> tg DQM = tg DRM (cạnh huyền-góc nhọn)
=> MQ = MR (2 cạnh tương ứng)