Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia MP lấy D sao cho M là trung điểm của PD
Xét tứ giác BPCD có
M là trung điểm chung của BC và PD
nên BPCD là hình bình hành
=>BP=CD và BP//CD
mà BP=CQ(GT)
nên CD=CQ
=>\(\widehat{CDQ}=\widehat{CQD}=\dfrac{180^0-\widehat{QCD}}{2}\)
BP//CD
=>AB//CD
=>\(\widehat{DCQ}=\widehat{IAK}\)
Xét ΔPDQ có
M,N lần lượt là trung điểm của PD,PQ
=>MN là đường trung bình
=>MN//DQ
=>IK//DQ
=>\(\widehat{CQD}=\widehat{AKI}\)
=>\(\widehat{AKI}=\widehat{AIK}\)
=>ΔAKI cân tại A
AM/AB = AN/AC nên MN//BC (Ta let đảo)
Ta có MK//BI => MK/BI = AK/AI (hệ quả talet)
Tương tự KN/IC = AK/AI => MK/BI = KN/IC mà BI = IC => MK = KN
AM/AB = AN/AC nên MN//BC (Ta let đảo)
Ta có MK//BI => MK/BI = AK/AI (hệ quả talet)
Tương tự KN/IC = AK/AI => MK/BI = KN/IC mà BI = IC => MK = KN
a: Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Do đó: MN//BC
b: Xét ΔABD có
MK//BD
nên \(\dfrac{MK}{BD}=\dfrac{AM}{AB}=\dfrac{5}{6}\left(1\right)\)
Xét ΔACD có
KN//DC
nên \(\dfrac{KN}{DC}=\dfrac{AN}{AC}=\dfrac{5}{6}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{KM}{BD}=\dfrac{KN}{DC}\)
mà BD=DC
nên KM=KN
hay K là trung điểm của MN