Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng của góc ABC và góc ACB là 180o-80o = 100o
\(\widehat{IBC}=\frac{\widehat{ABC}}{2}\)
\(\widehat{ICB}=\frac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100^o}{2}=50^o\)
Xét tam giác IBC :
\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-50^o=130^o\)
Vậy ...
A B C D E N I
a) Ta thấy \(\widehat{B}+\widehat{C}=180^o-60^o=120^o\)
\(\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{\widehat{B}+\widehat{C}}{2}=60^o\)
Vậy thì \(\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}=120^o\)
b) Ta có ngay \(\widehat{EIB}=\widehat{IBC}+\widehat{ICB}=60^o=\widehat{BIN}\)
Vậy thì \(\Delta EBI=\Delta NBI\left(g-c-g\right)\Rightarrow IE=IN\)
Tương tự ID = IN nên IE = IN = ID.
a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ
A B C D E F I
a,
ta có
A + B+ C = \(180^0\)
B + C = \(180^0\)- A
mà BI là phân giác góc B
IBC = \(\frac{1}{2}\)B
CI là phân giác góc C
ICB = \(\frac{1}{2}\)C
suy ra
IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)( \(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)= \(60^0\)
mà IBC + ICB + BIC = \(180^0\)
suy ra BIC = \(180^0\)- ( IBC + ICB )
BIC = \(180^0\)- \(60^0\)
BIC = \(120^0\)
b,
ta có vì I là giao điểm của phân giác góc B và C
suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC
nên IE = ID = IF
c,
ta có EIB + BIC =\(180^0\)
EIB = \(180^0-120^0\)
EIB = \(60^0\)
Mà EIB đối đỉnh góc DIC
suy ra DIC = EIB = \(60^0\)
vì IF là tia phân giác góc BIC
nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)= \(60^0\)
EIF = BIE + BIF = \(60^0+60^0=120^0\)
DIF = DIC + CIF = \(60^0+60^0=120^0\)
xét tam giác EIF và DIF có
EIF = DIF = \(120^0\)
IF là cạnh chung
IE = ID
suy ra tam giác EIF = tam giác DIF ( c-g-c )
suy ra EF = DF
ta có góc BIC đối đỉnh góc EID
nên BIC = EID = \(120^0\)
xét tam giác EIF và EID có
EID = EIF =\(120^0\)
ID = IF
IE cạnh chung
suy ra tam giác DIE = tam giác FIE ( c-g-c )
suy ra ED = EF
mà EF = DF
suy ra ED = EF = DF
suy ra tam giác EDF là tam giác đều
d,
ta có IE = IF = ID
nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF
mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó
suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF
a)
Tam giác ABC có:
BAC + ABC + ACB = 1800
600 + ABC + ACB = 1800
ABC + ACB = 1800 - 600
ABC + ACB = 1200
BI là tia phân giác của ABC
=> ABI = IBC = ABC : 2
CI là tia phân giác của ACB
=> ACI = CIB = ACB : 2
Tam giác IBC có:
BIC + IBC + ICB = 1800
BIC + ABC : 2 + ACB : 2 = 1800
BIC + \(\frac{1}{2}\) . (ABC + ACB) = 1800
BIC + 1200 : 2 = 1800
BIC + 600 = 1800
BIC = 1800 - 600
BIC = 1200
b)
FI là tia phân giác của BIC
=> CIF = FIB = BIC : 2 = 1200 : 2 = 600
EIB + BIC = 1800
EIB + 1200 = 1800
EIB = 1800 - 1200
EIB = 600
mà FIB = 600 (chứng minh trên)
=> EIB = FIB
Xét tam giác EIB và tam giác FIB có:
EIB = FIB (chứng minh trên)
IB chung
IBE = IBF (IB là tia phân giác của ABC)
=> Tam giác EIB = Tam giác FIB (g.c.g)
c)
EIB = DIC (2 góc đối đỉnh)
CIF = FIB (FI là tia phân giác của BIC)
mà EIB = FIB (chứng minh trên)
=> DIC = CIF
Xét tam giác CIF và tam giác CID có:
FIC = DIC (chứng minh trên)
IC chung
ICF = ICD (IC là tia phân giác của ACB)
=> Tam giác CIF = Tam giác CID (g.c.g)
=> IF = ID (2 cạnh tương ứng)
mà IF = IE (Tam giác EIB = Tam giác FIB)
=> IF = IE = ID
d)
CF = CD (Tam giác CIF = Tam giác CID)
EB = FB (Tam giác EIB = Tam giác FIB)
=> EB + CD = FB + CF = BC
Cậu tự vẽ hình !
Theo tổng ba goác trong một tam giác , ta có :
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(70^0+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\widehat{ABC}+\widehat{ACB}=110^0\)
Vì I là là giao điểm ba đường phân giác nên
BI là phân giác của góc ABC
\(\Rightarrow\widehat{ABI}=\widehat{IBC}=\frac{\widehat{ABC}}{2}\)
CI là phân giác của góc ACB
\(\Rightarrow\widehat{ACI}=\widehat{ICB}=\frac{\widehat{ACB}}{2}\)
Ta có :
\(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}=\frac{100^0}{2}=50^0\)
Và áp dụng tổng 3 góc trong tam giác lên tam giác BIC thì
=> Góc BIC = 1800 - 500 = 1300
(Bạn tự vẽ hình giùm)
Ta có \(\widehat{IBC}=\frac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))
và \(\widehat{ICB}=\frac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))
=> \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)
=> \(180^o-\widehat{BIC}=\frac{180^o-\widehat{A}}{2}\)
=> \(180^o-\widehat{BIC}=90^o-\frac{\widehat{A}}{2}\)
=> \(180^o-90^o=\widehat{BIC}-\frac{\widehat{A}}{2}\)
=> \(\widehat{BIC}-\frac{\widehat{A}}{2}=90^o\)
=> \(\widehat{BIC}=90^o+\frac{\widehat{A}}{2}\)
Thay \(\widehat{A}=80^o\)vào biểu thức \(\widehat{BIC}=90^o+\frac{\widehat{A}}{2}\), ta có:
\(\widehat{BIC}=90^o+\frac{80^o}{2}\)
=> \(\widehat{BIC}=90^o+40^o=130^o\)
Ta có ^IBC=^ABC2 (BD là tia phân giác của ^ABC)
và ^ICB=^ACB2 (CE là tia phân giác của ^ACB)
=> ^IBC+^ICB=^ABC+^ACB2
=> 180o−^BIC=180o−^A2
=> 180o−^BIC=90o−^A2
=> 180o−90o=^BIC−^A2
=> ^BIC−^A2 =90o
=> ^BIC=90o+^A2
Thay ^A=80ovào biểu thức ^BIC=90o+^A2 , ta có:
^BIC=90o+80o2
=> ^BIC=90o+40o=130o
sao ko có hình
150 nha bạn
cho mình nha