Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a:
Xét ΔAHD có AH=HD và góc AHD=90 độ
nên ΔAHD vuông cân tại H
=>góc HAD=góc HDA=45 độ
=>góc ADE=45 độ
Xét tứ giác ABDE có góc EAB+góc EDB=180 độ
nên ABDE là tứ giác nội tiếp
=>góc ABE=góc ADE=45 độ
Xét ΔEAB vuông tại A có góc ABE=45 độ
nên ΔEAB vuông cân tại A
=>AE=AB
b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ
nên AMHB là tứ giác nội tiếp
=>góc AHM=góc ABM=45 độ
a:
Xét ΔAHD có AH=HD và góc AHD=90 độ
nên ΔAHD vuông cân tại H
=>góc HAD=góc HDA=45 độ
=>góc ADE=45 độ
Xét tứ giác ABDE có góc EAB+góc EDB=180 độ
nên ABDE là tứ giác nội tiếp
=>góc ABE=góc ADE=45 độ
Xét ΔEAB vuông tại A có góc ABE=45 độ
nên ΔEAB vuông cân tại A
=>AE=AB
b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ
nên AMHB là tứ giác nội tiếp
=>góc AHM=góc ABM=45 độ
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật