Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E A F B O C D Hình vẽ hơi xấu :V 1 2
a,Xét \(\Delta AOB\)và \(\Delta COD\)có :
\(OC=OA\)(gt)
\(OD=OB\)(gt)
\(O_1=O_2\)(đối đỉnh)
\(=>\Delta AOB=\Delta COD\left(c-g-c\right)\)
b,Ta có :\(DCO=BAO\)(cm câu a)
Do 2 góc này ở vị trí so le trong và bằng nhau
\(=>AB//CD\)
Xét \(\Delta DAO\)và \(\Delta BCO\)có :
\(OC=OA\)(gt)
\(OB=OD\)(gt)
\(COB=AOD\)(đối đỉnh)
\(=>\Delta DAO=\Delta BCO\left(c-g-c\right)\)
\(=>ODA=OBC\)(2 góc tương ứng)
Do 2 góc này ở vị trí so le trong và bằng nhau
\(=>DA//BC\)
Gọi giao điểm của CE và DO là H
giao điểm của AO và BE là G
Lại có \(DCO=BAO=>\frac{DCO}{2}=\frac{BAO}{2}=>FAG=HCO\)
\(FGA=CGE\)( đối đỉnh)
Xét \(\Delta AGF\)và \(\Delta CGE\):
\(AFG+FGA+FAG=GEC+CGE+ECG=180^0\)
Do \(FAG+FGA=CGE+ECG\)
\(=>CEG=AFG\)
Vì 2 góc này ở vị trí so le trong và bằng nhau
\(=>CE//AF\)
c,Ta có \(CEB=AFG\)(cm câu b)
Mà \(AFG=\frac{CAB+DBA}{2}=\frac{CAB+CDB}{2}\)(CDB = DBA Ta cm ở câu a)
\(=>CEB=\frac{CAB+CDB}{2}\left(đpcm\right)\)
O A B C D E F
a, xét ΔAOB và ΔCOD có : OA = OC (Gt)
OB = OD (gt)
^AOB = ^COD (đối đỉnh)
=> ΔAOB = ΔCAOD (c-g-c)
b, ΔAOB = ΔCAOD (Câu a)
=> ^CDO = ^OBA (định nghĩa) mà 2 góc này so le trong
=> DC // AB (Định lí)
xét ΔODA và ΔOBC có : OA = OC (gt)
OB = OD (gt)
^DOA = ^BOC (đối đỉnh)
=> ΔODA = ΔOBC (c-g-c)
=> ^ADO = ^OBC (đn) mà 2 góc này so le trong
=> AD // BC (định lí)
ΔAOB = ΔCOD (câu a)
=> ^DCO = ^OAB (định nghĩa)
CE là phân giác của ^DCO (gt) => ^ECO = ^DCO : 2 (tính chất)
AF là phân giác của ^OAB (gt) => ^OAF = ^OAB : 2 (tính chất)
=> ^ECO = ^OAF mà 2 góc này so le trong
=> CE // AF (định lí)
c, mjnh không biết làm
a) Ta có: góc ^ADC=180* -(^CAD+^C)
^BDA=180*-(^BAD+^B)
mà ^CAD=^BAD(giả thiết)
^C=^B(giả thiết)
--> ^ADC=^BDA
lại có:
^CAD=^BAD(gt)
AD chung
--> tam giác ABD=tam giác ACD
Tự vẽ hình nha bạn
1)
a)xét tam giác AOB và COE có
OA=OC(GT)
OB+OE(GT)
AB=EC(GT)
Suy ra AOB=COE(c.c.c)
b) vì AOB=COE(câu a)
gócOAB=gócOCA(hai góc tương ứng)
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
súc vật tự đăng tự trả lời