Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăng muộn vậy? Ít người onl lắm sao giải cho đc? Mik thì mới lớp 6 thui
a)Xét tam giác OAH và tam giác OBH (2 tam giác vuông)
Có: OA=OB(tam giác AOB cân tai O)
OH (chung)
Suy ra tam giác OAH=tam giác OBH(canh huyền-canh gv)
Suy ra HA=HB(2 canh t.ứ)
b)Xét tam giác MAH và tam giác NBH(2 tam giác vuông)
HA=HB(c/m trên)
A=B(tam giác OAB cân)
Suy ra tam giác MAH= tam giác NBH(canh huyền-góc nhon)
Suy ra HM=HN(2 canh t.ứ)
a/ \(\Delta HOA\)vuông và \(\Delta HOB\)vuông có: OA = OB (\(\Delta AOB\)cân tại O)
Cạnh HO chung
=> \(\Delta HOA\)vuông = \(\Delta HOB\)vuông (cạnh huyền - góc nhọn) => HA = HB (hai cạnh tương ứng) (đpcm)
b/ Ta có: AO = BO (\(\Delta AOB\)cân tại O)
và OM = ON (gt)
=> AO - OM = BO - ON
=> AM = BN
\(\Delta HAM\)và \(\Delta HBN\)có: AM = BN (cmt)
\(\widehat{A}=\widehat{B}\)(\(\Delta AOB\)cân tại O)
HA = HB (cm câu a)
=> \(\Delta HAM\)= \(\Delta HBN\)(c - g - c) => HM = HN (hai cạnh tương ứng) (đpcm)
a) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))
AH chung
Do đó: ΔABH=ΔACH(c-g-c)
b) Ta có: ΔABH=ΔACH(cmt)
nên BH=CH(hai cạnh tương ứng)
Xét ΔABH và ΔKCH có
BH=CH(cmt)
\(\widehat{AHB}=\widehat{CHK}\)(hai góc đối đỉnh)
AH=KH(gt)
Do đó: ΔABH=ΔKCH(c-g-c)
Suy ra: \(\widehat{BAH}=\widehat{CKH}\)(hai góc tương ứng)
mà \(\widehat{BAH}\) và \(\widehat{CKH}\) là hai góc ở vị trí so le trong
nên AB//CK(Dấu hiệu nhận biết hai đường thẳng song song)
c) Sửa đề: I là trung điểm của DC
Ta có: AB=AC(ΔABC cân tại A)
mà AB=AD(Gt)
nên AC=AD
Xét ΔACI và ΔADI có
AC=AD(cmt)
AI chung
CI=DI(I là trung điểm của DC)
Do đó: ΔACI=ΔADI(c-c-c)
d) Ta có: ΔACI=ΔADI(cmt)
nên \(\widehat{AIC}=\widehat{AID}\)(hai góc tương ứng)
mà \(\widehat{AIC}+\widehat{AID}=180^0\)(hai góc kề bù)
nên \(\widehat{AIC}=\widehat{AID}=\dfrac{180^0}{2}=90^0\)
hay AI⊥CD(1)
Ta có: AB=AD(gt)
mà B,A,D thẳng hàng(gt)
nên A là trung điểm của BD
Xét ΔCBD có
CA là đường trung tuyến ứng với cạnh BD(A là trung điểm của BD)
\(CA=\dfrac{BD}{2}\left(CA=AB=\dfrac{BD}{2}\right)\)
Do đó: ΔCBD vuông tại C(Định lí)
⇒BC⊥CD(2)
Từ (1) và (2) suy ra AI//BC(Đpcm)
a) Xét tam giác AHB và tam giác AHE có
BH=HE
AH chung
góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)
=> tam giác AHB= tam giác AHE (c.g.c)
=>HE=HB
b) Xét tam giác AHB và tam giác DHE có
góc DHE = góc AHB ( đối đỉnh)
HE=HB (cmt)
AH=HD
=> tam giác AHB=tam giác DHE (c.g.c)
=> DE= AB ( 2 cạnh tương ứng)
=> tam giác DHE= tam giác AHE =tam giác AHB
=> AE=DE(2 cạnh tương ứng)
c) Xét tam giác AHC và tam giác DHC có
HC chung
góc AHE=góc DHE=90 độ
AH=HD
=> tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)
=>AC=DC (2 cạnh tương ứng)
Xét tam giác ACE và tam giác DCE có
AE= DE (cmt)
AC= DC(cmt)
CE chung
=> tam giác ACE= tam giác DCE(c.c.c)
=> góc EAC= góc EDC (2 góc tương ứng)
d)Ta có: C,E,B thẳng hàng
=> góc CEA+ góc AEB= 180 độ
Mà góc CEN và góc AEB là 2 góc đối đỉnh
=>góc AEC+ góc CEN= 180 độ
=> A,E,N thẳng hàng
tự kẻ hình nha:3333
a) xét tam giác AHB và tam giác AHC có
AB=AC(gt)
ABC=ACB(gt)
AHB=AHC(=90 độ)
=> tam giác AHB= tam giác AHC(ch-gnh)
=> HB=HC( hai cạnh tương ứng)
b) xét tam giác AHB và tam giác EHC có
AH=EH(gt)
BH=CH(cmt)
AHB=AHC(=90 độ)
=> tam giác AHB= tam giác EHC(cgc)
=> BAH=CEH( hai góc tương ứng)
mà BAH so le trong với CEH=> AB//CE
từ tam giác AHB= tam giác AHC=> BAH=CAH( hai góc tương ứng)
=> CEH=CAH=> tam giác AEC cân C
c) vì AB//HK=> BAH=AHK=> CAH=AHK(CAH=BAH)
=> tam giác AHK cân K=> AK=HK
vì AH vuông góc với BC=> CAH+ACH=90 độ=> ACH=90 độ-CAH
vì AHK+KHC=AHC=> KHC= 90 độ- AHK
=> ACH=KHC (AHK=CAH)
=> tam giác KHC cân K=> KC=HK
=> AK=KC=> K là trung điểm AC
A B C E D 1 2 1 2 1 1
CM: Do BE là tia p/giác của góc B => \(\widehat{B_1}=\widehat{B_2}=\widehat{\frac{B}{2}}\)
Do CD là tia p/giác của góc C => \(\widehat{C_1}=\widehat{C_2}=\widehat{\frac{C}{2}}\)
Mà \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
=> \(\widehat{C_1}=\widehat{B_1}\)
Xét t/giác ACD và t/giác ABE
có: \(\widehat{A}\) : chung
AC = AB (gt)
\(\widehat{C_1}=\widehat{B_1}\)
=> t/giác ACD = t/giác ABE(g.c.g)
=> AD = AE (2 cạnh t/ứng)
=> t/giác ADE cân tại A
=> \(\widehat{D_1}=\widehat{E_1}=\frac{180^0-\widehat{A}}{2}\) (1)
Ta có: t/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
từ (1) và (2) => \(\widehat{D_1}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (Đpcm)
M, N ở đâu ra vậy bạn
viết thiếu