K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

Đăng muộn vậy? Ít người onl lắm sao giải cho đc? Mik thì mới lớp 6 thui

15 tháng 2 2016
a) Xét ∆AHO,∆BHO ta có OH chung Vì ∆OAB là ∆cân => OA=OB (Đ/n) =>∆AHO=∆BHO ( ch-cgv) =>HA=HB (2 cạnh t/ứ) b)Xét ∆HAM,∆HBM có HA=HB (cmt) Mà ∆OAB cân tại O(gt)=>A^=B^ (T/c) Mặt khác:OM+MA=OA =>AM=OA-OM ON+NB=OB =>BN=OB-ON => AM=BN => ∆HAM=∆HBM (c.g.c) c)Xét ∆AOB có OA=OB =>∆AOB cân tại O(gt) =>C^=180°-A^/2 (1) Mặt khác OM=ON (gt) =>∆OMN cân tại A =>N1^=180°-A^/2 (2) Từ 1,2=> N^=C^ (2 góc này ở vị trí đồng vị) =>MN//AB
14 tháng 2 2018

a)Xét tam giác OAH và tam giác OBH (2 tam giác vuông)

Có:                  OA=OB(tam giác AOB cân tai O)

                             OH  (chung)

Suy ra tam giác OAH=tam giác OBH(canh huyền-canh gv)

Suy ra                  HA=HB(2 canh t.ứ)

b)Xét tam giác MAH và tam giác NBH(2 tam giác vuông)

                           HA=HB(c/m trên)

                              A=B(tam giác OAB cân)

Suy ra tam giác MAH= tam giác NBH(canh huyền-góc nhon)

Suy ra                   HM=HN(2 canh t.ứ)

15 tháng 2 2018

a/ \(\Delta HOA\)vuông và \(\Delta HOB\)vuông có: OA = OB (\(\Delta AOB\)cân tại O)

Cạnh HO chung

=> \(\Delta HOA\)vuông = \(\Delta HOB\)vuông (cạnh huyền - góc nhọn) => HA = HB (hai cạnh tương ứng) (đpcm)

b/ Ta có: AO = BO (\(\Delta AOB\)cân tại O)

và OM = ON (gt)

=> AO - OM = BO - ON

=> AM = BN

\(\Delta HAM\)và \(\Delta HBN\)có: AM = BN (cmt)

\(\widehat{A}=\widehat{B}\)(\(\Delta AOB\)cân tại O)

HA = HB (cm câu a)

=> \(\Delta HAM\)\(\Delta HBN\)(c - g - c) => HM = HN (hai cạnh tương ứng) (đpcm)

a) Xét ΔABH và ΔACH có

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))

AH chung

Do đó: ΔABH=ΔACH(c-g-c)

b) Ta có: ΔABH=ΔACH(cmt)

nên BH=CH(hai cạnh tương ứng)

Xét ΔABH và ΔKCH có 

BH=CH(cmt)

\(\widehat{AHB}=\widehat{CHK}\)(hai góc đối đỉnh)

AH=KH(gt)

Do đó: ΔABH=ΔKCH(c-g-c)

Suy ra: \(\widehat{BAH}=\widehat{CKH}\)(hai góc tương ứng)

mà \(\widehat{BAH}\) và \(\widehat{CKH}\) là hai góc ở vị trí so le trong

nên AB//CK(Dấu hiệu nhận biết hai đường thẳng song song)

c) Sửa đề: I là trung điểm của DC

Ta có: AB=AC(ΔABC cân tại A)

mà AB=AD(Gt)

nên AC=AD

Xét ΔACI và ΔADI có

AC=AD(cmt)

AI chung

CI=DI(I là trung điểm của DC)

Do đó: ΔACI=ΔADI(c-c-c)

d) Ta có: ΔACI=ΔADI(cmt)

nên \(\widehat{AIC}=\widehat{AID}\)(hai góc tương ứng)

mà \(\widehat{AIC}+\widehat{AID}=180^0\)(hai góc kề bù)

nên \(\widehat{AIC}=\widehat{AID}=\dfrac{180^0}{2}=90^0\)

hay AI⊥CD(1)

Ta có: AB=AD(gt)

mà B,A,D thẳng hàng(gt)

nên A là trung điểm của BD

Xét ΔCBD có 

CA là đường trung tuyến ứng với cạnh BD(A là trung điểm của BD)

\(CA=\dfrac{BD}{2}\left(CA=AB=\dfrac{BD}{2}\right)\)

Do đó: ΔCBD vuông tại C(Định lí)

⇒BC⊥CD(2)

Từ (1) và (2) suy ra AI//BC(Đpcm)

2 tháng 1 2022

a) Xét tam giác AHB và tam giác AHE có

  BH=HE

  AH chung

  góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)

  => tam giác AHB= tam giác AHE (c.g.c)

  =>HE=HB

b) Xét tam giác AHB và tam giác DHE có

   góc DHE = góc AHB ( đối  đỉnh)

   HE=HB (cmt)

   AH=HD

 => tam giác AHB=tam giác DHE (c.g.c)

 => DE= AB ( 2 cạnh tương ứng)

=> tam giác DHE= tam giác AHE =tam giác AHB

=> AE=DE(2 cạnh tương ứng)

c) Xét tam giác AHC và tam giác DHC có

  HC chung

  góc AHE=góc DHE=90 độ

  AH=HD

 => tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)

=>AC=DC (2 cạnh tương ứng)

Xét tam giác ACE và tam giác DCE có

  AE= DE (cmt)

  AC= DC(cmt)

  CE chung

 => tam giác ACE= tam giác DCE(c.c.c)

 => góc EAC= góc EDC (2 góc tương ứng)

  

2 tháng 1 2022

d)Ta có: C,E,B thẳng hàng

=> góc CEA+ góc AEB= 180 độ

Mà góc CEN và góc AEB là 2 góc đối đỉnh

=>góc AEC+ góc CEN= 180 độ

 => A,E,N thẳng hàng

17 tháng 6 2020

tự kẻ hình nha:3333

a) xét tam giác AHB và tam giác AHC có

AB=AC(gt)

ABC=ACB(gt)

AHB=AHC(=90 độ)

=> tam giác AHB= tam giác AHC(ch-gnh)

=> HB=HC( hai cạnh tương ứng)

b) xét tam giác AHB và tam giác EHC có

AH=EH(gt)

BH=CH(cmt)

AHB=AHC(=90 độ)

=> tam giác AHB= tam giác EHC(cgc)

=> BAH=CEH( hai góc tương ứng)

mà BAH so le trong với CEH=> AB//CE

từ tam giác AHB= tam giác AHC=> BAH=CAH( hai góc tương ứng)

=> CEH=CAH=> tam giác AEC cân C

c) vì AB//HK=> BAH=AHK=> CAH=AHK(CAH=BAH)

=> tam giác AHK cân K=> AK=HK

vì AH vuông góc với BC=> CAH+ACH=90 độ=> ACH=90 độ-CAH

vì AHK+KHC=AHC=> KHC= 90 độ- AHK

=> ACH=KHC (AHK=CAH)

=> tam giác KHC cân K=> KC=HK

=> AK=KC=> K là trung điểm AC

17 tháng 6 2020

Thank nhe :)))
 

11 tháng 7 2019

A B C E D 1 2 1 2 1 1

CM: Do BE là tia p/giác của góc B => \(\widehat{B_1}=\widehat{B_2}=\widehat{\frac{B}{2}}\)

Do CD là tia p/giác của góc C => \(\widehat{C_1}=\widehat{C_2}=\widehat{\frac{C}{2}}\)

Mà \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

=> \(\widehat{C_1}=\widehat{B_1}\)

Xét t/giác ACD và t/giác ABE

có: \(\widehat{A}\) : chung

 AC = AB (gt)

  \(\widehat{C_1}=\widehat{B_1}\)

=> t/giác ACD = t/giác ABE(g.c.g)

=> AD = AE (2 cạnh t/ứng)

=> t/giác ADE cân tại A 

=> \(\widehat{D_1}=\widehat{E_1}=\frac{180^0-\widehat{A}}{2}\) (1)

Ta có: t/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

từ (1) và (2) => \(\widehat{D_1}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị

=> DE // BC (Đpcm)