\(\widehat{m}\)=\(\widehat{n}\)= 49 độ. G...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho 2 góc kề bù xOy và yOz. Gọi Om, On lần lượt là các tia phân giác của góc xOy; yOza. Cm Om  I  Onb. Lấy điểm H thuộc tia Oy. Kẻ tia HE  I  Om, HK  I  On (  \(E\in Om;K\in On\)). CM góc EHK = 90oc. Trên nửa mặt phẳng bờ OH có chứa tia Ox, kẻ tia Ht // Ox. Ht cắt Om tại P. CM HE là tia phân giác của  góc OHPd. Giả sử 3.OHP = 2.HOx. Tính HOx và OPH2. Cho tam giác AMN có góc A = 82o; M = 49o. Gọi AP là...
Đọc tiếp

1. Cho 2 góc kề bù xOy và yOz. Gọi Om, On lần lượt là các tia phân giác của góc xOy; yOz

a. Cm Om   On

b. Lấy điểm H thuộc tia Oy. Kẻ tia HE  I  Om, HK  I  On (  \(E\in Om;K\in On\)). CM góc EHK = 90o

c. Trên nửa mặt phẳng bờ OH có chứa tia Ox, kẻ tia Ht // Ox. Ht cắt Om tại P. CM HE là tia phân giác của  góc OHP
d. Giả sử 3.OHP = 2.HOx. Tính HOx và OPH

2. Cho tam giác AMN có góc A = 82o; M = 49o. Gọi AP là tia đối của tia AM. Kẻ tia Ax nằm trong góc PAN và song song với MN

a. CM Ax là tia phân giác của góc PAN

b. Từ N kẻ NE // AM \(\left(E\in\text{Ax}\right)\text{ }\). So sánh các cặp góc của 2 tam giac AMN và AEN

c. Vẽ đường thẳng d đi qua M và vuông góc với MN, từ A kẻ AB vuông góc với d \((B\in d)\). CM rằng B,A,E thẳng hàng

3.Cho tam giác ABC có góc A = 90o Kẻ tia phân giác của góc ABC cắt AC tại M. Từ A kẻ đường thẳng song song với BM, cắt tia đối của tia BC tại D

a. CM góc DAB = BDA

b. Trên nửa mặt phẳng bờ BC không chứa A, vẽ tia Ay sao cho góc CAy = C. CM rằng đường thẳng BM cắt đường thẳng chứa tia Ay

c. Trên nửa mặt phẳng bờ BC khoongchuasw A, vẽ tia Bz sao cho góc ABz = 90o. CM góc CAy = CBz

2
17 tháng 10 2019

giúp mk với
mk đang cần gấp

TT-TT

17 tháng 10 2019

TL 1 câu cx đc mà

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0

4 tháng 11 2019

a/ tam giác BAH và tam giác CAH có 

AB=AC ( tam giác ABC cân vì góc B = góc C)

góc BHA = góc CHA = 90 độ

góc B = góc C

=> tam giác BAH = tam giác CAH (CH - GN)

=>góc BAH = góc HAC

4 tháng 11 2020

Ta có : góc A + góc B +góc C = 180 ( Định lý tổng 3 góc của 1 tam giác )
             80     +  50   + góc C   = 180
          => góc C = 180 -80 -50 = 50 
Ta có: góc BAC + góc CAx = 180 ( kề bù )
                80       + góc Cax = 180
                => Góc Cax = 100
Vì AI là tia phân giác của Góc CAx => góc CAy = góc yAx 
=> góc CAy = Góc CAx / 2 =100/2 = 50
 Ta có ( góc yAC + góc CAB ) + góc BAC = 180 ( ở vị trí trong cùng phía )
 Suy ra Ay // BC ( đpcm)

a: Xét ΔAMN có

Ax vừa là đường cao, vừa là phân giác

=>ΔAMN cân tại A

b: BE//AC

=>góc BEM=góc ANE

=>góc BEM=góc BME

=>BE=BM

Xét ΔDEB và ΔDNC có

góc DBE=góc DCN

DB=DC

góc BDE=góc NDC

=>ΔDEB=ΔDNC

=>BE=NC

=>BE=CN

9 tháng 1 2019

Hình tự vẽ

a, \(\Delta BAM\)và \(\Delta BDM\)

\(\widehat{ABM}=\widehat{DBM}\left(gt\right)\)

\(AM\): cạnh chung 

\(\widehat{BAM}=\widehat{BDM}\left(=90^o\right)\)

\(\Rightarrow\Delta BAM=\Delta BDM\left(ch-gn\right)\)

\(\Rightarrow BA=BD\)(2 cạnh tương ứng )

Để nghĩ tiếp :(

27 tháng 3 2020

Ta có:

∠AMB+∠ABM=90o

∠BMD+∠MBD=900

Mà ∠AMB=∠BMD (gt)

=> ∠ABM=∠MBD

Xét ΔBAM và ΔBAM có:

∠ABM=∠MBD (gt)

BM  chung

∠ABM=∠MBD (cmt)

=>  ΔBAM = ΔBAM (g-c-g)

=> BA=BD (2 cạnh tương ứng)

b,Xét ΔABC và ΔDBE có:

∠ABC  chung

∠BAC=∠BDM=90o

BA=BD (cmt)

=> ΔABC = ΔDBE (g-c-g)

c,Ta có

BC⊥ED

AK⊥ED

=>  BC//AK hay BC//AN

=> ∠ANM=∠MBC ( 2 góc slt) (1)

Mà:

DH⊥AC

BA⊥AC

=> BA//DH hay BA//DN

=> ∠MND=∠ABM ( 2 góc so le trong) (2)

Mà ∠ABM=∠MBD ( vì BM là tia phân giác của góc ABC)

Từ(1) và (2) =>∠ANM=∠MND

=> NM là tia phân giác của góc HMK

d,Ta có BM là tia phân giác của góc ABC (3)

Và NM là tia phân giác của góc HMK

Vì ∠ANM=∠MBC

    ∠MND=∠ABM

=> ∠ANM=∠MBC=∠MND=∠ABM

=> BN là tia phân giác của góc ABC (4)

Từ (3) và (4) => B,M,N thẳng hàng