K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
D A E H M K
a) Xét \(\Delta HAE\) và \(\Delta HDA\) có :\(\left\{{}\begin{matrix}\widehat{AHE}=\widehat{AHD}=90^0\left(gt\right)\\\widehat{HAE}=\widehat{HDA}\left(cùng\text{ }phụ\text{ }với\text{ }E\right)\end{matrix}\right.\)
\(\Rightarrow\Delta HAE\sim\Delta HDE\left(g.g\right)\)
b) Áp dụng định lý \(Py-ta-go\) vào \(\Delta ADE\) có \(\widehat{DAE}=90^0\)
\(\Rightarrow AD^2+AE^2=DE^2\\ \Rightarrow AE^2=DE^2-AE^2=17^2-8^2=225\\ \Rightarrow AE=15\left(cm\right)\)
Xét \(\Delta HDA\) và \(\Delta ADE\) có :\(\left\{{}\begin{matrix}\widehat{DHA}=\widehat{DAE}=90^0\left(gt\right)\\\widehat{D}\text{ }chung\end{matrix}\right.\)
\(\Rightarrow\Delta DHA\sim\Delta DAE\left(g.g\right)\\ \Rightarrow\dfrac{AH}{AE}=\dfrac{HD}{AD}=\dfrac{AD}{ED}\\ \Rightarrow\dfrac{AH}{15}=\dfrac{HD}{8}=\dfrac{8}{17}\\ \Rightarrow\left\{{}\begin{matrix}AH=\dfrac{15\cdot8}{17}=7,06\left(cm\right)\\HD=\dfrac{8\cdot8}{17}=3,76\left(cm\right)\end{matrix}\right.\)
\(\text{c) Ta có }:\Delta HDA\sim\Delta HAE\\ \Rightarrow\dfrac{DH}{AH}=\dfrac{AD}{AE}\\ \Rightarrow AH\cdot AD=DH\cdot AE\\ \Rightarrow2AM\cdot\dfrac{1}{2}DK=DH\cdot AE\\ \Rightarrow AM\cdot DK=DH\cdot AE\\ \Rightarrow\dfrac{DK}{AE}=\dfrac{HD}{AM}\)
Xét \(\Delta HDK\) và \(\Delta MAE\) có: \(\left\{{}\begin{matrix}\widehat{HDK}=\widehat{MAE}\left(cùng\text{ }phụ\text{ }\widehat{E}\right)\\\dfrac{DK}{AE}=\dfrac{HD}{AM}\left(Chứng\text{ }minh\text{ }trên\right)\end{matrix}\right.\)
\(\Rightarrow\Delta HDK\sim\Delta MAE\left(c.g.c\right)\)
d) Xét \(\Delta HAE\) và \(\Delta ADE\) có :\(\left\{{}\begin{matrix}\widehat{AHE}=\widehat{DAE}=90^0\left(gt\right)\\\widehat{E}\text{ }chung\end{matrix}\right.\)
\(\Rightarrow\Delta HAE\sim\Delta ADE\left(g.g\right)\\ \Rightarrow\dfrac{AE}{DE}=\dfrac{HE}{AE}\\ \Rightarrow AE^2=DE\cdot HE\\ \Rightarrow\dfrac{1}{AE^2}=\dfrac{1}{DE\cdot HE}\left(1\right)\)
\(Lại\text{ }có\text{ }:\dfrac{HD}{AD}=\dfrac{AD}{ED}\\ \Rightarrow AD^2=HD\cdot ED\\ \Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{HD\cdot ED}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\dfrac{1}{AD^2}+\dfrac{1}{AE^2}=\dfrac{1}{DE\cdot HE}+\dfrac{1}{HD\cdot ED}\)
\(=\dfrac{1}{DE\cdot HE}+\dfrac{1}{HD\cdot ED}\\ =\dfrac{HD}{HD\cdot DE\cdot HE}+\dfrac{HE}{HD\cdot ED\cdot HE}\\ =\dfrac{HD+HE}{HD\cdot DE\cdot HE}=\dfrac{ED}{HD\cdot DE\cdot HE}=\dfrac{1}{HD\cdot HE}\left(3\right)\)
\(Lại\text{ }có\text{ }:\Delta HDA\sim\Delta HAE\\ \Rightarrow\dfrac{DH}{AH}=\dfrac{AH}{EH}\\ \Rightarrow AH^2=DH\cdot EH\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{DH\cdot EH}\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AD^2}+\dfrac{1}{AE^2}\)