K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai rồi bạn

21 tháng 4 2018

Tương tự HS tự làm

10 tháng 8 2016

GIẢI:

 

a) Xét Δ ABC và Δ AED, ta có :

\widehat{BAC}= \widehat{DAC}=90^0 (đối đỉnh)

AB = AD (gt)

AC = AD (gt)

=> Δ ABC = Δ AED (hai cạnh góc vuông)

=> BC = DE

Xét Δ ABD, ta có :

\widehat{BAC}=90^0 (Δ ABC vuông tại A)

=> AD \bot AE

=>  \widehat{BAD}=90^0

=> Δ ABD vuông tại A.

mà : AB = AD (gt)

=> Δ ABD vuông cân tại A.

=>\widehat{BDC}=45^0

cmtt : \widehat{BCE}=45^0

=> \widehat{BDC}=\widehat{BCE}=45^0

mà : \widehat{BDC},\widehat{BCE} ở vị trí so le trong

=> BD // CE

b) Xét Δ MNC, ta có :

NK \bot MC = > NK là đường cao thứ 1.

MH \bot NC = > MH là đường cao thứ 2.

NK cắt MH tại A.

=> A là trực tâm. = > CA là đường cao thứ 3.

=> MN \bot AC tại I.

mà : AB \bot AC

=> MN // AB.

c) Xét Δ AMC, ta có :

 \widehat{MAE}= \widehat{BAH} (đối đỉnh)

\widehat{MEA}= \widehat{BCA} (Δ ABC = Δ AED)

=>\widehat{MAE}=\widehat{MEA} (cùng phụ góc ABC)

=> Δ AMC cân tại M

=> AM = ME (1)

Xét Δ AMI và Δ DMI, ta có :

\widehat{AIM }= \widehat{DIM}=90^0 (MN \bot AC tại I)

IM cạnh chung.

mặt khác : \widehat{IMA }= \widehat{MAE} (so le trong)

\widehat{DMI }= \widehat{MEA} (đồng vị)

mà : \widehat{MAE}=\widehat{MEA} (cmt)

=> \widehat{IMA }= \widehat{IMD}

=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)

=> MA = MD (2)

từ (1) và (2), suy ta : MA = ME = MD

ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)

=>MA = DE/2.

29 tháng 6 2020

từ cách vẽ hình

 

NV
28 tháng 7 2021

a. Gọi G là trung điểm AD

Tam giác ABC đều \(\Rightarrow\widehat{B}=\widehat{C}=60^0\)

\(CD=BC-BD=40\left(cm\right)\)

Trong tam giác vuông BDI:

\(sinB=\dfrac{ID}{BD}\Rightarrow DI=BD.sinB=20.sin60^0=10\sqrt{3}\left(cm\right)\)

\(cosB=\dfrac{IB}{BD}\Rightarrow IB=BD.cosB=20.cos60^0=10\left(cm\right)\)

Trong tam giác vuông CDK:

\(sinC=\dfrac{DK}{CD}\Rightarrow DK=CD.sinC=40.sin60^0=20\sqrt{3}\left(cm\right)\)

\(cosC=\dfrac{KC}{CD}\Rightarrow KC=CD.cosC=40.cos60^0=20\left(cm\right)\)

NV
28 tháng 7 2021

b. Gọi M là trung điểm BC \(\Rightarrow BM=CM=\dfrac{1}{2}BC=30\left(cm\right)\)

\(DM=BM-BD=10\left(cm\right)\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=30\sqrt{3}\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ADM:

\(AD=\sqrt{AM^2+DM^2}=20\sqrt{7}\left(cm\right)\)

 \(AG=DG=\dfrac{AD}{2}=10\sqrt{7}\left(cm\right)\)

\(AI=AB-BI=50\left(cm\right)\)

Hai tam giác vuông AEG và ADI đồng dạng (chung góc \(\widehat{IAD}\))

\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AG}{AI}\Rightarrow AE=\dfrac{AG.AD}{AI}=28\left(cm\right)\)

Do EG là trung trực AD \(\Rightarrow DE=AE=28\left(cm\right)\)

Tương tự ta có \(AK=AC-CK=40\left(cm\right)\)

Hai tam giác vuông AGF và AKD đồng dạng

\(\Rightarrow\dfrac{AG}{AK}=\dfrac{AF}{AD}\Rightarrow AF=\dfrac{AG.AD}{AK}=35\left(cm\right)\)

\(\Rightarrow DF=AF=35\left(cm\right)\)

\(EF=EG+FG=\sqrt{AE^2-AG^2}+\sqrt{AF^2-AG^2}=7\sqrt{21}\left(cm\right)\)