A B H C x 32 30...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

góc CAH=góc B=30 độ

góc C=90-30=60 độ

Xét ΔCAH vuông tại H có tan CAH=CH/AH

nên \(\dfrac{CH}{AH}=tan30^0=\dfrac{\sqrt{3}}{3}\)

29 tháng 1 2017

1/a/ Ta có: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(1+x^2\right)\left(1+xy\right)+\left(1+y^2\right)\left(1+xy\right)-2\left(1+x^2\right)\left(1+y^2\right)\ge0\)

 \(\left(y-x\right)^2\left(xy-1\right)\ge0\)(đúng vì \(\hept{\begin{cases}x\ge1\\y\ge1\end{cases}}\))

Dấu = xảy ra khi x = y = 1

29 tháng 1 2017

b/ Ta có: 6xy - 2x + 3y \(\le\)2

<=> (2x + 1)(3y - 1)\(\le\)1

Áp dụng câu a ta có:

\(A=\frac{1}{4x^2-4x+2}+\frac{1}{9y^2+6y+2}\)

\(=\frac{1}{1+\left(2x-1\right)^2}+\frac{1}{1+\left(3y-1\right)^2}\)

\(\ge\frac{2}{1+\left(2x-1\right)\left(3y+1\right)}\)

\(\ge\frac{2}{1+1}=1\)

Dấu = xảy ra khi x = 1, y = 0

6 tháng 7 2018

❤ѕѕѕσиɢσкυѕѕѕ❤

23 tháng 11 2017

1) x ^ 2013 + y ^ 2014 = 0 . 

23 tháng 11 2017

#Nguyễn Đình Toàn giải rõ ra giúp tớ được khônggg

AH
Akai Haruma
Giáo viên
12 tháng 9 2017

Lời giải:

1)

\(A=\sin ^6\alpha+\cos^6\alpha+3\sin^2\alpha-\cos^2\alpha\)

\(\Leftrightarrow A=(\sin ^2\alpha+\cos^2\alpha)^3-3\sin^2\alpha\cos^2\alpha(\sin^2\alpha+\cos^2\alpha)+3\sin^2\alpha-\cos^2\alpha\)

\(\Leftrightarrow A=1-3\sin^2\alpha\cos^2\alpha+3\sin ^2\alpha-\cos^2\alpha\)

\(\Leftrightarrow A=(1-\cos^2\alpha)(3\sin^2\alpha+1)=\sin^2\alpha(3\sin^2\alpha+1)\)

2)

Kẻ phân giác \(BD\)

Khi đó, \(\tan \frac{B}{2}=\tan \angle ABD=\frac{AD}{AB}\)

Mà theo tính chất đường phân giác kết hợp với tính chất dãy tỉ số bằng nhau:

\(\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{AC}{AB+BC}\)

Do đó, \(\tan \frac{B}{2}=\frac{AC}{AB+BC}\) (đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 9 2017

3)

a) Áp dụng định lý Pitago \(\Rightarrow BC=\sqrt{x^2+y^2}\)

Ta có \(HI\perp AB, HK\perp AC\Rightarrow HI\parallel AC, HK\parallel AB\)

Áp dụng định lý Tales:

\(\frac{AI}{AB}=\frac{HC}{BC}\Rightarrow AI=\frac{HC.AB}{BC}\)

Xét tam giác vuông $ABC$ và $HAC$ còn có chung góc nhọn \(C\) nên là hai tam giác đồng dạng.

\(\Rightarrow \frac{AC}{BC}=\frac{HC}{AC}\Rightarrow HC=\frac{AC^2}{BC}=\frac{y^2}{\sqrt{x^2+y^2}}\)

Do đó, \(AI=\frac{y^2.x}{x^2+y^2}\) . Tương tự, \(AK=\frac{x^2y}{x^2+y^2}\)

b)

Từ phần a ta có:

\(BI=AB-AI=x-\frac{xy^2}{x^2+y^2}=\frac{x^3}{x^2+y^2}\)

\(CK=AC-AK=y-\frac{x^2y}{x^2+y^2}=\frac{y^3}{x^2+y^2}\)

\(\Rightarrow \frac{BI}{CK}=\frac{x^3}{y^3}\) (đpcm)