Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,XétΔABM và ΔACM có :
^AMB=^AMC(=90o)
AB=AC(GT)
AM :cạnh chung(gt)
Suy ra:ΔABM= ΔACM (ch-cgv)
=>MB=MC( 2 cạnh tương ứng)
b,Ta có MB=BC2 =242 = 12
Δ AMB vuông tại M có :
AM2+BM2=AB2 ( đl Pytago)
=>AM2=AB2−BM2
= 202−122
= 162
=>AM=16
A B C M G
Gọi M là giao điểm của GA với BC.
Ta thấy \(S_{GAB}=S_{GAC}\) mà hai tam giác trên chung cạnh đáy GA nên chiều cao hạ từ B và C xuông GA là bằng nhau.
Vậy thì \(S_{GBM}=S_{GCM}\)
Từ đó suy ra BM = CM hay M là trung điểm BC.
Vậy AM là trung tuyến tam giác ABC.
Lại có \(S_{GBM}=\frac{S_{GBC}}{2}=\frac{S_{ABG}}{2}\Rightarrow\frac{AG}{GM}=2\)
Vậy nên G là trọng tâm tam giác ABC.
CÁc câu kia dễ mình không ns còn câu d trong 3 điểm thẳng hàng =180 độ
tự kẻ hình nha
a) xét tam giác ABH và tam giác ACH có
AB=AC(gt)
ABC=ACB(gt)
AHB=AHC(=90 độ)
=> tam giác ABH= tam giác ACH( ch-gnh)
b) từ tam giác ABH= tam giác ACH=> HB=HC( hai cạnh tương ứng)
=>HB=HC=BC/2=12/2=6cm
ta có AH^2=AB^2-BH^2=10^2-6^2=100-36=64=8^2
=> AH=8 (AH>0)
d) vì HB=HC=> H là trung điểm của BC=> AH là trung tuyến
mà G là trọng tâm của tam giác ABC=> G thuộc AH=> A,G,H thẳng hàng
c) vì AH vừa là trung tuyến vừa là đường cao => AH là trung trực của BC
vì G thuộc AH=> GB=GC
xét tam giác ABG và tam giác ACG có
AB=AC(gt)
GB=GC( cmt)
AG chung
=> tam giác ABG= tam giác ACG(ccc)
chế cho phần d) lên trước phần c) cho đỡ phải chứng minh lại thôi chứ không có j đâu
a: BD=CD=6cm
=>AD=8cm
b: Ta có: ΔABC cân tại A
mà AD là đường cao
nên Dlà trung điểm của BC
=>A,G,D thẳng hàng
c: Xét ΔABG và ΔACG có
AB=AC
góc BAG=góc CAG
AG chung
Do đó: ΔABG=ΔACG
a) Vì tam giác ABC cân nên : AB = AC (gt)
AH chung (gt)
H vuông (gt)
=> Tam giác ABH = tam giác AHC ( cạnh huyền và cạnh góc vuông)
b) Vì tam giác ABC cân nên đường cao AH sẽ tạo ra một đường chính giữa AB chia thành 2 phần bằng nhau ( cái này gọi là đường trung trực ) => BH = HC = \(\frac{12}{2}\)= 6 cm.
Áp dụng định lí Pi ta go ta có:
102 - 62 = 64 => \(\sqrt{64}\) = 8 . Vậy AH bằng 8 cm.
c) Xét 2 tam giác ABG và tam giác AGC có:
AG chung (gt)
AB = AC (gt)
Vì G là trọng tâm của tam giác => G cách đều 3 cạnh cảu tam giác, điều đó có nghĩa là:
GA = GB = GC
=> GB = GC => Tam giác ABG = ACG