Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E F x y M I K
a) Gọi I là trung điểm của AB,
K là trung điểm của AC.
Ta có:
\(IA=IE=MK=\frac{1}{2}AB\)
\(KF=KA=IM=\frac{1}{2}AC\)
TA CÓ TAM GIÁC IAE VÀ AKF LẦN LƯỢT CÂN TẠI I VÀ K
\(\Rightarrow\widehat{EIB}=2\widehat{xAB}=42^o;\widehat{CKF}=2\widehat{CAY}=42^o\)
\(\Rightarrow\widehat{EIB}=\widehat{CKF}\)
MI//AC
=> BIM=BAC ( đồng vị) (1)
M//AB
=> MKC=BAC (đồng vị)(2)
từ (1) và (2)
\(\Rightarrow\widehat{BIM}=\widehat{MKC}\)
TỪ ĐÂY TA CÓ THỂ DỄ DÀNG CÓ EIM=MKF
=> \(\Delta EIM\)= \(\Delta MKF\)
=> ME = MF
=> TAM GIÁC MEF cân tại M
A M B C N D x y
a) Vì \(\widehat{AMx}=\widehat{B}\), hai góc này ở vị trí đồng vị nên Mx // BC.
Giả sử Mx không cắt AC. Suy ra Mx // AC. Mx // AC, Mx // BC nên AC // BC(mâu thuẫn với giả thiết ABC là tam giác). Vậy Mx cắt AC
b) Vì \(\widehat{CNy}=\widehat{C}\), hai góc này ở vị trí so le trong nên Ny // BC.
Ny // BC, Mx // BC nên Mx // Ny.
cho mk sửa xíu"câu c) á,trên nửa... nha chứ bên trên là mk viết sai á"!xl mí bn nha!
Hình bạn tự vẽ
a) Xét tam giác BMA và tam giác CMD , có:
BM=MC ( vì M là trung điểm của BC)
góc BMA = góc CMD( 2 góc đối đỉnh)
AM=MB ( giả thiết )
=> Tam giác BMA = tam giác CMD ( c-g-c )
=> góc BAM = góc CDM ( 2 góc tương ứng )(đpcm)
b) Xét tam giác BMD và tam giác CMA , có:
BM=MC ( vì M là trung điểm của BC)
góc BMD = góc CMA( 2 góc đối đỉnh)
AM=MB ( giả thiết )
=> Tam giác BMD = tam giác CMA ( c-g-c )
=> BD = AC ( 2 cạnh tương ứng ) ( đpcm )
=> góc BDM = góc MAC ( 2 góc tương ứng )
Mà góc BMD và góc MAC ở vị trí sole trong
=> AC // BD ( dấu hiệu nhận biết 2 đường thẳng song song) ( đpcm )
Còn lại dễ bạn tự làm nha mỏi tay quá
A B C y x
- Áp dụng tính chất tổng ba góc trong một tam giác, ta có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\) ( 1 )
- Theo đề bài ta có:
\(\widehat{BAy}=\widehat{ABC}\) , \(\widehat{xAC}=\widehat{ACB}\) ( 2 )
- Từ ( 1 ) và ( 2 ) suy ra:
\(\widehat{ABC}+\widehat{BAy}+\widehat{CAx}\) = 180o
hay Ax và Ay là 2 tia đối nhau.
là gì vậy bn