Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Tinh ∆. Pt co 2 nghiem x1,x2 <=> ∆>=0.
Theo dinh ly Viet: S=x1+x2=-b/a=m+3.
Theo gt: |x1|=|x2| <=> ...
2/ \(\frac{\sin^2x-\cos^2x}{1+2\sin x.\cos x}\)
\(=\frac{\cos^2x\left(\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\cos^2x}\right)}{\cos^2x\left(\frac{1}{\cos^2x}+\frac{2\sin x.\cos x}{\cos^2x}\right)}\)
\(=\frac{\tan^2x-1}{\tan^2x+1+2\tan x}\)
\(=\frac{\left(\tan x-1\right)\left(\tan x+1\right)}{\left(\tan x+1\right)^2}\)
\(=\frac{\tan x-1}{\tan x+1}\left(dpcm\right)\)
c/ A M C B N BC=8 AC=7 AB=6
- Ta có: \(\overrightarrow{BA}^2=\left(\overrightarrow{CA}-\overrightarrow{CB}\right)^2\)
\(\Leftrightarrow BA^2=CA^2-2\overrightarrow{CA}.\overrightarrow{CB}+CB^2\)
\(\Leftrightarrow\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-BA^2}{2}=\frac{77}{2}\)
- \(\overrightarrow{MN}^2=\left(\overrightarrow{CN}-\overrightarrow{CM}\right)^2=\left(\frac{3}{2}\overrightarrow{CB}-\frac{5}{7}\overrightarrow{CA}\right)^2\)
\(\Leftrightarrow MN^2=\frac{9}{4}CB^2-\frac{15}{7}\overrightarrow{CA}.\overrightarrow{CB}+\frac{25}{49}CA^2\)
\(=\frac{9}{4}.64-\frac{15}{7}.\frac{77}{2}+\frac{25}{49}.49\)
\(=\frac{173}{2}\)
\(\Rightarrow MN=\sqrt{\frac{173}{2}}=\frac{\sqrt{346}}{2}\)
a) Có \(\overrightarrow{BC}^2=\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{AC}^2+\overrightarrow{AB}^2-2\overrightarrow{AC}.\overrightarrow{AB}\)
Suy ra: \(\overrightarrow{AC}.\overrightarrow{AB}=\dfrac{\overrightarrow{AC^2}+\overrightarrow{AB}^2-\overrightarrow{BC}^2}{2}=\dfrac{8^2+6^2-11^2}{2}=-\dfrac{21}{2}\).
Do \(\overrightarrow{AC}.\overrightarrow{AB}< 0\) nên \(cos\widehat{BAC}< 0\) suy ra góc A là góc tù.
b) Từ câu a suy ra: \(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\dfrac{21}{2.6.8}=-\dfrac{7}{32}\).
Do N là trung điểm của AC nên \(AN=AC:2=8:2=4cm\).
\(\overrightarrow{AM}.\overrightarrow{AN}=AM.AN.cos\left(\overrightarrow{AM},\overrightarrow{AN}\right)\)
\(=2.4.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=2.4.\dfrac{-7}{32}=-\dfrac{7}{4}\).
Lời giải:
Theo công thức diện tích quen thuộc:
\(S_1=S_{MAB}=\frac{1}{2}MB.MA.\sin \widehat{AMB}\)
\(S_2=S_{MAC}=\frac{1}{2}.MC.MA\sin \widehat{AMC}\)
\(\Rightarrow \frac{S_1}{S_2}=\frac{MB}{MC}.\frac{\sin \widehat{AMB}}{\sin (180-\widehat{AMB})}=\frac{MB}{MC}=\frac{\overrightarrow{BM}}{\overrightarrow {MC}}\)
\(\Rightarrow S_1\overrightarrow{MC}=S_2\overrightarrow{BM}\)
\(\Leftrightarrow S_1(\overrightarrow{MA}+\overrightarrow{AC})=S_2(\overrightarrow{BA}+\overrightarrow{AM})\)
\(\Leftrightarrow S_1\overrightarrow{AC}-S_2\overrightarrow{BA}=S_2\overrightarrow{AM}-S_1\overrightarrow{MA}\)
\(\Leftrightarrow S_1\overrightarrow{AC}+S_2\overrightarrow{AB}=(S_1+S_2)\overrightarrow{AM}\) (đpcm)