\(\dfrac{1}{2}\)BM = MC.Trên AC lấy N sao cho AN =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

A G H B D E C M N P Q

13 tháng 3 2020

Có ai trả lời được không, xin hãy trả lời đi, mình cảm ơn.

13 tháng 3 2020

làm ơn trả lời giùm tớ

10 tháng 6 2021

ban co the ve hinh cho de hieu hon dc ko?neu hieu dc minh se giup

5 tháng 6 2015

Bạn thích thì vẽ, không vẽ cũng không sao, bài này mình cho mấy bạn Ôn thi vào lớp 6 tham khảo ...

Thấy sai sai ở đâu đó kìa

18 tháng 7 2020

thấy sai sai, trên BC lấy E sao cho BD=2/3 DC là sao ??

2 tháng 11 2018

có nghĩa là bn hk cấp 2 hay3 r à

2 tháng 11 2018

sơ đồ : 

A B C M N  

                 Tỉ số diện tích : 

\(\frac{S_{MNC}}{S_{BMC}}=\frac{MN}{BM}=\frac{1}{3}\)( cùng chiều cao hạ từ )

\(\frac{S_{BMC}}{S_{ABC}}=\frac{MC}{AC}=\frac{2}{3}\)( cùng chiều cao hạ từ )

\(S_{MNC}=\frac{2}{3}\times\frac{1}{3}\times S_{ABC}=\frac{2}{9}\times S_{ABC}\)

\(S_{ABC}=S_{MNC}\div\frac{2}{9}=24\times\frac{9}{2}=108cm^2\)

\(S_{ABC}=108cm^2\)

14 tháng 7 2020

a/

Xét tam giác AOM và tam giác AOC có chung đường cao hạ từ O xuống AC

\(\frac{S_{AOM}}{S_{AOC}}=\frac{AM}{AC}=\frac{1}{2}\Rightarrow S_{AOC}=2xS_{AOM}=2x4=8cm^2\)

b/

Xét tam giác AIC và tam giác BIC có chung đường cao hạ từ C xuống AB

\(\frac{S_{AIC}}{S_{BIC}}=\frac{AI}{BI}=\frac{1}{2}\)

Hai tam giác trên lại chung cạnh đáy IC nên

S(AIC) / S(BIC) = đường cao hạ từ A xuống IC / đường cao hạ từ B xuống IC = 1/2

Xét tam giác AOC và tam giác BOC có chung cạnh đáy OC nên

S(AOC) / S(BOC) = đường cao hạ từ A xuống IC / đường cao hạ từ B xuống IC = 1/2

\(\Rightarrow S_{BOC}=2xS_{AOC}=2x8=16cm^2\)

Xét tam giác AOM và tam giác COM có chung đường cao hạ từ O xuống AC nên

\(\frac{S_{AOM}}{S_{COM}}=\frac{AM}{CM}=1\Rightarrow S_{AOM}=S_{COM}=4cm^2\)

\(\Rightarrow S_{BCM}=S_{BOC}+S_{COM}=16+4=20cm^2\)

Xét tam giác ABC và tam giác BCM có chung đường cao hạ từ B xuống AC nên

\(\frac{S_{BCM}}{S_{ABC}}=\frac{CM}{AC}=\frac{1}{2}\Rightarrow S_{ABC}=2xS_{BCM}=2x20=40cm^2\)

c/

Xét tam giác AIC và tam giác ABC có chung đường cao hạ từ C xuống AB nên

\(\frac{S_{AIC}}{S_{ABC}}=\frac{AI}{AB}=\frac{1}{3}\Rightarrow S_{AIC}=\frac{S_{ABC}}{3}=\frac{40}{3}cm^2\)

\(S_{AOI}=S_{AIC}-S_{AOC}=\frac{40}{3}-8=\frac{16}{3}cm^2\)