K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2022

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhaaaaa

14 tháng 2 2022

Vẽ các đường cao AI; BJ; CK của \(_{\Delta}\)ABC

NM = BC => BM = CN

Ta thấy: \(_{\Delta}\) vuông BHK ᔕ \(\Delta\) Vuông CHJ nên:

\(\frac{BK}{JC}=\frac{HK}{HJ}\left(1\right)\)

BJ // MD và CK // NE nên :

\(\frac{JC}{Jb}=\frac{BC}{BM}=\frac{BC}{CN}=\frac{BK}{KE}\)

\(=>\frac{KE}{Jb}=\frac{BK}{JC}\left(2\right)\)

Từ (1) và (2) => \(\frac{KE}{Jb}=\frac{HK}{JH}\)=> \(\Delta\) vuông EKH ᔕ \(\Delta\) vuông DJH

\(=>\hat{HEK}=\hat{HDJ}=>\hat{AEH}+\hat{HDJ}=180^0\left(đpcm\right)\)

mình không vẽ hình vì sợ bị duyệt nên lamf thê snayf cho nhanh

Bài 1: 

a: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

c: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

Xét tứ giác BICD có 

BI//CD(cùng vuông góc với AC)

CI//BD(cùng vuông góc với AB)

Do đó: BICD là hình bình hành

Bài 2:

a: Xét (O) có 

MN=EF

OH là khoảng cách từ O đến dây MN

OK là khoảng cách từ O đến dây EF
Do đó: OH=OK

Xét ΔAHO vuông tại H và ΔAKO vuông tại K có

AO chung

OH=OK

Do đó: ΔAHO=ΔAKO

Suy ra: AH=AK

b: Xét ΔOHM vuông tại H và ΔOKE vuông tại K có 

OM=OE

OH=OK

Do đó: ΔOHM=ΔOKE

Suy ra: HM=KE

Ta có: AM+MH=AH

AE+EK=AK

mà AH=AK

và HM=KE

nên AM=AE