Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O I
Theo bất đẳng thức tam giác ta có
\(\Delta OAB:\)\(AB< OA+OB\)
\(\Delta OAC:\)\(AC< OA+OC\)
\(\Delta OBC:\)\(BC< OB+OC\)
\(\Rightarrow AB+BC+AC< 2\left(OA+OB+OC\right)\)
\(\Leftrightarrow\frac{AB+BC+AC}{2}< OA+OB+OC\)(1)
Gọi I là giao điểm của BO và AC
\(\Delta OAI:-OA< AI+OI\)
\(\Delta IBC:-IB< IC+BC\)
\(\Rightarrow OA+IB< AI+OI+IC+BC=AC+BC+OI\)
\(\Leftrightarrow OA+IB-OI< AC+BC\)
\(\Leftrightarrow OA+OB< AC+BC\)(OI+OB=IB)
Chứng minh tương tự ta có \(OA+OC< AB+BC;OB+OC< AB+AC\)
\(\Rightarrow2\left(OA+OB+OC\right)< 2\left(AB+BC+AC\right)\)(CỘNG 2 VẾ CỦA 3 BẤT ĐẢNG THỨC TRÊN)
\(\Leftrightarrow OA+OB+OC< AB+BC+AC\)(2)
Từ (1),(2) suy ra điều phải chứng minh.
A B C O
Ta có: AB < OA + OB (bất đẳng thức tam giác)
AC < OA + OC (bất đẳng thức tam giác)
BC < OB + OC (bất đẳng thức tam giác)
=> AB + AC + BC < 2 (OA + OB + OC) => \(\frac{AB+AC+BC}{2}< OA+OB+OC\)(1)
và OA + OB < BC + AC (kết quả của bài 17 SGK)
OB + OC < AB + AC (kết quả của bài 17 SGK)
OA + OC < AB + BC (kết quả của bài 17 SGK)
=> 2 (OA + OB + OC) < 2 (AB + AC + BC) => OA + OB + OC < AB + AC + BC (2)
Từ (1) và (2) => \(\frac{AB+AC+BC}{2}< OA+OB+OC< AB+AC+BC\)(đpcm)
Hình tự vẽ nha bạn
a)Xét tam giác ABM và tam giác CEM có:
BM=MC(gt)
\(\widehat{AMB}=\widehat{CME}\)(2 góc đối đỉnh)
AM=ME(gt)
\(\Rightarrow\)tam giác AMB=tam giác CME(c-g-c)
=> AB=CE(2 cạnh tương ứng)
Vì M là trung điểm của AE \(\Rightarrow AM=\frac{1}{2}AE\)
b) Bất đẳng thức đối với tam giác ACE là: AC+CE>AE
CE - AC < AE
Vì AB=CE(theo chứng minh trên) => AC+AB>AE \(\Rightarrow\frac{AC+AB}{2}>\frac{AE}{2}=AM\)(1)
AB - AC < AE \(\Rightarrow\frac{AB-AC}{2}< \frac{AE}{2}=AM\)(2)
Từ (1) và (2) \(\Rightarrow\frac{AB-AC}{2}< AM< \frac{AB+AC}{2}\)
A B C M E
Trên tia đối của MA lấy E sao cho \(MA=ME\)
Xét \(\Delta ABM\) và \(\Delta ECM\) có:
AM = EM (dựng hình)
\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)
BM = CM (suy từ gt)
\(\Rightarrow\Delta ABM=\Delta ECM\left(c.g.c\right)\)
\(\Rightarrow AB=CE\)
Ta có: \(AE< AC+CE\)
\(\Rightarrow2AM< AC+AB\)
\(\rightarrowđpcm.\)