\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi K là trung điểm của DB

Xét ΔBDC có 

M là trung điểm của BC

K là trung điểm của DB

Do đó: MK là đường trung bình

=>MK//DI

Xét ΔAKM có 

I là trung điểm của AM

ID//KM

Do đó: D là trung điểm của AK

=>AD=DK

mà DK=KB

nên AD=DK=KB

=>AD=1/2DB

dùng t/c 3 đường trung tuyến tam giác nhé!!

54365465

7 tháng 4 2016

a) Xet tam giac ADE va tam giac FEC ta co:

     AE=EC ( E la trung diem AC )

     DE= EF ( E la trung diem DF)

   goc AED= goc CEF ( 2 goc doi dinh )

==> tam giac ADE = tam giac FEC ( c=g=c)

---> AD= CF ( 2 canh tuong ung )

ma AD=DB ( D la trung diem AB)

nen DB=CF

b) ta co: goc EAD = goc ECF ( tam gia ADE= tam giac FEC)

ma goc EAD va goc ECF nam o vi tri so le trong

nen AD// CF hay AB// CF 

xet tam giac BDC va tam giac DCF ta co:

BD= CF ( cm a)

DC=DC ( canh chung)

goc BDC= goc FCD (2 goc so le trong va AB//CF)

--> tam giac BDC= tam giac DCF ( c=g=c)

c) ta co :

DE=1/2 DF ( E la trung diem DF)

DF= BC ( tam giac FCD= tam giac BDC)

--> DE=1/2 BC

13 tháng 12 2018

Gọi E là trung điểm BD
=> DE = EB (1)
Tam giác DBC có: E là trung điểm BD (theo cách vẽ)
M là trung điểm BC (gt)
=> EM là đường trung bình của tam giác DBC
=> EM // CD (t/c đường tb của tam giác)
Tam giác AEM có: I là trung điểm AM (gt)
DI // EM (vì EM // CD mà I thuộc CD)
=> D là trung điểm AE
=> AD = DE (2) 
Từ (1),(2) => AD = DE = EB
Mà BD = DE + EB
BD = 2 DE (vì DE = EB)
=> BD= 2 AD (vì AD = DE) hay AD=1/2 BD
=> đpcm

13 tháng 12 2018

CÁCH 2 nek!!

Từ điểm M kẻ đường thẳng Mx song song với DC cắt AB tại H 
xét tam giác AHM có : DI // HM (DC // Mx) 
AI =IM (gt) 
=> DI là đường trung bình của tam giác AHM 
=> AD =DH (1) 
xét tam giác BDC có: DC // HM (DC // Mx) 
BM = MC (gt) 
=> HM là đường trung bình của tam giác BDC 
=> DH = HB (2) 
từ (1) và (2) => AD = DH = HB 
=> AD=1/2 DB hay BD = 2AD => đpcm

9 tháng 4 2016

a) Xet tam giac ADE va tam giac FEC ta co:

     AE=EC ( E la trung diem AC )

     DE= EF ( E la trung diem DF)

   goc AED= goc CEF ( 2 goc doi dinh )

==> tam giac ADE = tam giac FEC ( c=g=c)

---> AD= CF ( 2 canh tuong ung )

ma AD=DB ( D la trung diem AB)

nen DB=CF

b) ta co: goc EAD = goc ECF ( tam gia ADE= tam giac FEC)

ma goc EAD va goc ECF nam o vi tri so le trong

nen AD// CF hay AB// CF 

xet tam giac BDC va tam giac DCF ta co:

BD= CF ( cm a)

DC=DC ( canh chung)

goc BDC= goc FCD (2 goc so le trong va AB//CF)

--> tam giac BDC= tam giac DCF ( c=g=c)

c) ta co :

DE=1/2 DF ( E la trung diem DF)

DF= BC ( tam giac FCD= tam giac BDC)

--> DE=1/2 BC

mình nha mình lại cho

9 tháng 4 2016

a) Xet tam giac ADE va tam giac FEC ta co:

     AE=EC ( E la trung diem AC )

     DE= EF ( E la trung diem DF)

   goc AED= goc CEF ( 2 goc doi dinh )

==> tam giac ADE = tam giac FEC ( c=g=c)

---> AD= CF ( 2 canh tuong ung )

ma AD=DB ( D la trung diem AB)

nen DB=CF

b) ta co: goc EAD = goc ECF ( tam gia ADE= tam giac FEC)

ma goc EAD va goc ECF nam o vi tri so le trong

nen AD// CF hay AB// CF 

xet tam giac BDC va tam giac DCF ta co:

BD= CF ( cm a)

DC=DC ( canh chung)

goc BDC= goc FCD (2 goc so le trong va AB//CF)

--> tam giac BDC= tam giac DCF ( c=g=c)

c) ta co :

DE=1/2 DF ( E la trung diem DF)

DF= BC ( tam giac FCD= tam giac BDC)

--> DE=1/2 BC

Bn ơi, D ở đâu z

Viết đề chính xác nhé

^^

15 tháng 6 2020

Tự vẽ hình

Xét \(\Delta ACI\)và \(\Delta MCI\)có :

chung đường cao từ C 

AI=MI

\(\Rightarrow\Delta ACI=\Delta MCI\)(1)

Xét \(\Delta DAI\)và \(\Delta DMI\) có

chung đường cao từ D

AI=MI

\(\Rightarrow\Delta DAI=\Delta DMI\)(2)

Từ (1) và (2)=>\(\Delta ACD=\Delta MCD\)

Mặt khác:\(\Delta MCD=\frac{1}{2}CBD\)(chung đường cao từ đỉnh D và CM=\(\frac{1}{2}\)BC)

\(\Rightarrow\Delta CBD=2\Delta ACD\)

Mà 2 tam giác này chung đường cao từ đỉnh C=>BD=2AD hay AD=\(\frac{1}{2}\)DB

15 tháng 6 2020

alo alo

24 tháng 7 2017

Giải

a) Xét ∆ADE và ∆CFE, ta có:

AE = CE (gt)

ˆAED = CEF^ (đối đỉnh)

DE = FE(gt)

Suy ra: ∆ADE = ∆CFE (c.g.c)

⇒⇒ AD = CF (hai cạnh tương ứng)

Mà AD = DB (gt)

Vậy: DB = CF

b) Ta có: ∆ADE = ∆CFE (chứng minh trên)

⇒ˆADE = CFE^ (2 góc tương ứng)

⇒⇒ AD // CF (vì có cặp góc so le trong bằng nhau)

Hay AB // CF

Xét ∆DBC = ∆CDF, ta có:

BD = CF (chứng minh trên)

ˆBDC = ˆFCD (hai góc so le trong vì CF // AB)

DC cạnh chung

Suy ra: ∆BDC = ∆FCD(c. g. c)

c) Ta có: ∆BDC = ∆FCD (chứng minh trên)

Suy ra: ˆC1 = ˆD1 (hai góc tương ứng)

Suy ra: DE // BC (vì có hai góc so le trong bằng nhau)

\(\Delta\)BDC = ∆FCD => BC = DF (hai cạnh tương ứng)

DE = 1 : 2 . DF(gt). Vậy DE = 1 : 2 . BC

20 tháng 12 2017

a/Xét ΔAED va ΔCEF có:

AE=CE(vì E là trung điểm của AC)

∠AED=∠CEF(đối đỉnh)

ED=EF(vì E là trung điểm của DF)

nên: ΔAED=ΔCEF(c-g-c)

do đó: AD=CF

mà AD=BD (vì D là trung điểm của AB)

vậy BD=CF

b/Ta có: ∠EAD=∠ECF(vì ΔAED=ΔCEF)

mà hai góc này ở vị trí so le trong

nên AB//CF

Ta có:AB//CF(cmt)

nên ∠BDC=∠FCD (hai góc so le trong)

Xét: ΔBDC và ΔFCD có:

DC là cạnh chung

∠BDC=∠FCD(cmt)\

DB=CF(cmt)

nên ΔBDC=ΔFCD(c-g-)

c/Ta có: ∠BCD=∠FDC(vì ΔBDC=ΔFCD)

mà hai góc này ở vị trí so le trong

nên DE//BC

Ta có: \(DE=\dfrac{1}{2}DF\)(vì E là trung điểm của DF)

mà DF=CB(vì ΔFCD=ΔBDC)

vậy \(DE=\dfrac{1}{2}CB\)

A B C F E D