K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017

a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:

AH là cạnh chung

AB = AC ( \(\Delta ABC\)cân tại A)

BH = CH ( H là trung điểm của BC)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)

Xét \(\Delta ABC\)cân tại A ta có:

AH là đường trung tuyến ( H là trung điểm của BC)

\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)

\(\Rightarrow AH⊥BC\)tại H.

b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:

BH = CH ( H là trung điểm của BC)

\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)

\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)

c) Ta có:

AB = AC (\(\Delta ABC\)cân tại A)

BD = CE ( cmt)

\(\Rightarrow AB-BD=AC-CE\)

\(\Rightarrow AD=AE\)

\(\Rightarrow\Delta ADE\)cân tại A

\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)

Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)

Nên \(\widehat{ADE}=\widehat{ABC}\)

Mặt khác 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow\)DE // BC.

d) Nối A với I.

Ta có: 

\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)

\(\Rightarrow HE=EN+ME\)

\(\Rightarrow HE=MN\)

Xét \(\Delta AEN\)vuông tại E ta có:

\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)

\(\Rightarrow AN^2=AD^2+HM^2\)

\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)

\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)

\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)

\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AI^2-NI^2\)

\(\Rightarrow AI^2=AN^2+NI^2\)

\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)

\(\Rightarrow IN⊥AN\)tại N.

27 tháng 4 2021

ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

27 tháng 4 2021

mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung

1 tháng 2 2016

:
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
 HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
 AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
 DH =EH 
 dpcm

1 tháng 2 2016

Bài 3 :
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
 HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
 AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
 DH =EH 
 dpcm

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểmcủa BC

hay HB=HC

b: Xét ΔADH vuông tạiD và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra HD=HE

hay ΔHDE cân tại H

a) Vì \(\widehat{A}=90^o\rightarrow AB\perp AC\)

Mà  \(HE\perp AC\)

-> AB song song với HE

b) Vì AB song song với HE (theo a)

=> \(\widehat{ABH}=\widehat{EHC}=50^o\)(2 góc đồng vị)

Ta có: \(\widehat{AHE}+\widehat{EHC}=\widehat{AHC}\)

\(\Rightarrow\widehat{AHE}+50^o=90^o\left(AH\perp BC\right)\)

\(\Rightarrow\widehat{AHE}=90^o-50^o=40^o\)

Vì AB song song với HE

=> \(\widehat{AHE}=\widehat{BAH}=40^o\)(2 góc so le trong)

17 tháng 3 2020

a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)

Có: AB=AC(gt)

Góc ABH = góc ACH(gt)

=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)

=>HB=HC (2 cạnh tương ứng)

=>Góc CAH = góc BAH( 2 góc tương ứng)

b/ Ta có :HB=HC( cmt)

=> H trung điểm BC

Ta có: HB=HC=BC/2=8/2=4 (cm)

Xét tam giác ABH vuông tại H

Có AB^2= AH^2+HB^2 (pytago)

=>AH^2= AB^2-HB^2

AH^2= 5^2-4^2

AH^2=25-16

AH^2=9

AH= căng 9

=> AH= 3cm

Vậy AH=3cm

c/ Xét tam giác ADH( góc D=90 độ) và tam giác AEH ( góc E = 90 độ)

Có: AH chung

Góc DAH= góc EAH ( tam giác ABH= tam giác ACH)

=> tam giác ADH= tam giác AEH ( cạnh huyền - góc nhọn)

=> AD=AE ( 2 cạnh tương ứng)

=> Tam giác ADE cân tại A ( 2 cạnh bên bằng nhau)

Xét tam giác ABC cân tại A(gt)

Có: Góc B= (180 độ - góc A)/2 (định lí)

Xét tam giác ADE cân tại A (cmt)

Có: Góc D= (180 độ - góc A)/2 (định lí)

=> Góc B= Góc D ( =(180 độ - góc A)/2)

=> DE//BC ( 2 góc đồng vị bằng nhau)