K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

Tam giác ABC, 2trung tuyến BM, BN cắt nhau tại G ... . sai ở đây nên mình sửa lại là BM , CN . có đúng ko bạn . nếu đúng thì bài giải của mình đây nè 
chứng minh
a , trong tam giác BGC có EF là đường trung bình => EF // BC ( *)
trong tam giác ABC có MN là đường trung bình => MN // BC ( * * )
từ (*) (**) => EF // MN (1)
nối AG . 
trong tam giác ABG có NE là đường trung bình => NE // AG (***)
trong tam giác ACG có MF là đường trung bình => MF // AG (****)
từ (***) (****) => NE // MF (2 )
từ (1) và (2 )
=> MNEF là hình bình hành ( dấu hiệu 1 sgk )
b . đề sai ở chỗ MT = MG phải ko . mình chữa lại là MI = MG
chứng minh
từ câu a , MNEF là hình bình hành => NG = GF và FG = MG
mà : BE = EG = MG = MI => G là trung điểm của BI (1 )
CF = FG = NG = JN => G là trung điểm của JC ( 2)
từ (1 ) và (2) => JC cắt IB tại trung điểm của mỗi đường <=> JIBC là hình bình hành ( dấu hiệu 5 sgk )

ko biết có sai chỗ nào ko nữa . sai thì các bạn chữa dùm nha

24 tháng 10 2017

a b c d e f g h m

xét tam giác adb có h là tủng điểm của ad(gt)

e là trung điểm của ab (gt)

=> eh là đường trung bình của tam giác adb (dn...) => he //db ;he=1/2db                         (1)

xét tam giác dcb có g là tủng điểm của dc (gt)

f là trung điểm của bc (gt)

=>gf là đường trung bình của tam giác dcb (dn...)

=> gf//db ;gf=1/2db                         (2)

từ (1) và (2) => he//gf  và he = gf => hefg à hbh 

b) có gfeh là hbh (cm câu a )  có eg và hf là 2 đường chéo 

mà m là tủng điểm của eg (t) =. m cũng là trug điểm của hf (t/c...) 

=> m ,h,f thẳng hàng 

,

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
10 tháng 7 2019

cách 2, câu b/

Gọi giao của AC và BD là I, chứng minh được DI= CI

mà ED =CF 

=> IE= IF

mặt khác, tam giác IEF và tam giác IDC cùng cân tại I nên EF // CD

10 tháng 7 2019

cách 1, câu b/

Gọi N là giao EF và BC

dùng đường trung bình và tiên đề Euclid, chứng minh được E,F,N thẳng

>>> đpcm

21 tháng 12 2018

giúp mình với sắp thi rồi

22 tháng 12 2018

Tứ giác có thể là hình vuông, chữ nhật phải không bạn?

P/s: Hỏi thôi chớ không trả lời đâu :D

1 Cho ABCD là hình thang cân ( AB // CD ; AB<CD) biết AB = 8cm , CD=2AB ; AH vuông góc với CD và AH = 3 cm . Chu vi hình thang ABCD là 2 Cho hình vuông ABCD có diện tích = 36cm2 Gọi M ; N lần lượt là trung điểm của các cạnh BC và CD . Khi đó diện tích tam giác AMN là ............ cm23 Cho hình vuông ABCD có AB =16cm . AC cắt BD tại O  ; 1 góc vuông xOy có tia Ox cát cạnh AB tại E và tia Oy cát cạnh BC tại E . Diện tích tứ...
Đọc tiếp

1 Cho ABCD là hình thang cân ( AB // CD ; AB<CD) biết AB = 8cm , CD=2AB ; AH vuông góc với CD và AH = 3 cm . Chu vi hình thang ABCD là 

2 Cho hình vuông ABCD có diện tích = 36cm2 Gọi M ; N lần lượt là trung điểm của các cạnh BC và CD . Khi đó diện tích tam giác AMN là ............ cm2

3 Cho hình vuông ABCD có AB =16cm . AC cắt BD tại O  ; 1 góc vuông xOy có tia Ox cát cạnh AB tại E và tia Oy cát cạnh BC tại E . Diện tích tứ giác OEBF là ??????

4 Cho tam giác ABC gọi D là trung điểm của cạnh BC ; E là 1 điểm bất kỳ trên cạnh AC (E khác A ) và F là trung điểm của BE nếu  SABC =120cm2 và SAFDC = 80 cm2  thì SBDF  là ................. cm2

5 Cho tam giác ABC có diện tích 20 cm2 gọi AM là trung tuến của tam giác khi đó SABM là ..............cm            

                                        GIÚP MK NHANH NHA MN KẾT QUẢ THÔI CŨNG DƯỢC 

                  

0
Bài 1: Cho a2+b2+ab+bc+ac<0. CMR : a2+b2<c2Bài 2: Cho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.a) Chứng minh tứ giác MENF là hình thoi.b) Chứng minh chi vi tam giác CME không đổi khi E  chuyển động trên BCCâu 3:   Cho tam giác ABC, O là giao điểm...
Đọc tiếp

Bài 1: Cho a2+b2+ab+bc+ac<0. CMR : a2+b2<c2

Bài 2: Cho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.

a) Chứng minh tứ giác MENF là hình thoi.

b) Chứng minh chi vi tam giác CME không đổi khi E  chuyển động trên BC

Câu 3:   Cho tam giác ABC, O là giao điểm của các đường trung tực trong tam giác, H là trực tâm của tam giác. Gọi P, R, M theo thứ tự là trung điểm các cạnh AB, AC, BC. Gọi Q là trung điểm đoạn thẳng AH.

a.      Xác định dạng của tứ giác OPQR? Tam giác ABC phải thỏa mãn điều kiện gì  để OPQR là hình thoi?

b.     Chứng minh AQ = OM.

c.     Gọi G là trọng tâm của tam giác ABC. Chứng minh H, G, O thẳng hàng.

d.     Vẽ ra ngoài tam giác ABC các hình vuông ABDE, ACFL. Gọi I là trung điểm của EL. Nếu diện tích tam giác ABC không đổi và BC cố định thì I di chuyển trên đường nào?

0