K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

ae giúp mk với mai nộp rùi, tui chỉ mắc câu b) nữa thôi

18 tháng 4 2018

Tam giác ABD=Tam giác HBD ??

a) Xét ∆ vuông ABC và ∆ vuông AED ta có : 

AB = AD (gt)

AC = AD (gt)

=> ∆ABC = ∆AED ( 2 cgv)

=> BD = DE 

b) Xét ∆ABD có : 

BAC = 90° 

=> AD\(\perp\)AE 

Mà AB = AD (gt)

=> ∆ABD vuông cân tại A 

=> BDC = 45° 

Chứng minh tương tự ta có : 

BCE = 45° 

=> BDC = BCE = 45° 

Mà 2 góc này ở vị trí so le trong 

=> BD//CE

2 tháng 7 2020

a) Xét hai tam giác vuông ABD và ACE có:

AB = AC (do ΔABCΔABC cân tại A)

AˆA^: góc chung

Vậy ΔABD=ΔACE(ch−gn)ΔABD=ΔACE(ch−gn)

b) ΔABCΔABC cân tại A

⇒⇒ AH là đường cao đồng thời là đường trung tuyến của BC

hay HB = HC

ΔBDCΔBDC có DH là đường trung tuyến ứng với cạnh huyền BC

⇒⇒ DH = HB = HC = BC2BC2

⇒⇒ ΔHDCΔHDC cân tại H.

c) ΔHDCΔHDC cân tại H có HM là đường cao đồng thời là đường trung tuyến

Vậy DM = MC (đpcm).

4 tháng 7 2020

 Đề sai => sửa :

Cho tam giác ABC cân tại A , góc A < 90 độ , đường cao BD và CE cắt nhau tại H ( D thuộc AC , E thuộc AB ) .

a) CM: Tam giác ABD = tam giác ACE 

b) CM : tam giác BHC cân .

c) So sánh HB = HD 

d)Trên tia đối của tia EH lấy điểm N sao cho NH < NC . Trên tia đối của tia DH lấy điểm M sao cho MH = NH . CM : BN , AH , CM đồng quy tại 1 điểm .

Giải :

a ,Vì EC là đường cao => \(EC\perp AB\Rightarrow\widehat{AEC}=\widehat{CEB}=90^0\)

    Vì BD là đường cao => \(BD\perp AC\Rightarrow\widehat{ADB}=\widehat{BDC}=90^0\)

Xét \(\Delta ACE\)và \(\Delta ABD\)có :

AB = AC ( \(\Delta ABC\)cân tại A )

\(\widehat{AEC}=\widehat{ADB}=90^0\)

\(\widehat{A}\)chung

=> \(\Delta ACE\)\(\Delta ABD\)( ch.gn )

=> \(\widehat{ABD}=\widehat{AEC}\)( 2 góc tương ứng )

b , Ta có : \(\widehat{ABC}=\widehat{ACB}\)\(\Delta ABC\)cân tại A )

Mà : \(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)

        \(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)

        \(\widehat{ABD}=\widehat{AEC}\)(cmt)

=> \(\widehat{DBC}=\widehat{ECB}\)

=> \(\Delta HBC\)cân tại H .

c , Xét \(\Delta DHC\)có \(\widehat{ADB}=90^0\)

=> HC là cạnh huyền ( cạnh lớn nhất )

=> HC > DH 

Mà DB = DC (\(\Delta HBC\) cân tại H )

=> HB > HD

d , mik cx 0 bt :>

Bài làm

~ Tự vẽ hình, đó mik lm = đt nên k vẽ đc hình ~

a) Xét ∆BOA và ∆COK có: 

OA = OK ( GT )

GÓC BOA = GÓC COK ( HAI GÓC ĐỐI )

OB = OC ( O LÀ TRUNG ĐIỂN BC )

=> ∆BOA = ∆COK ( c.g.c )

=> AB = KC ( hai cạnh tương ứng )

=> Góc ABC = GÓC KCB ( HAI GÓC TƯƠNG ỨNG )

MÀ hai góc này ở vị trí số le trong.

=> AB // CK

Mà BA  |  AC 

=> CK  |  AC

Xét ∆ABC và ∆CKA có:

AB = CK ( cmt )

Góc BAC = góc KCA ( đó AB và CK cùng vuông góc với AC )

Cạnh AC chung.

=> ∆ABC = ∆CKA. ( c.g.c )

Bài alfm

Vì tâm giác ABC = tâm giác AKC 

=> BC = AK.

Mà AO là trung điểm AK.

=> AO = 1/2 AK

Hay AO = 1/2BC

23 tháng 11 2014

a. Xét TG ABH và TG ACH, ta có:

AB=AC(gt), BH=CH (vì H là trung điểm BC), AH: cạnh chung

=> TG ABH= TG ACH (c.c.c).

b. Vì TG ABH= TG ACH (cmt) nên góc AHB= góc AHC (2 góc tương ứng)

Ta có: AHB và AHC là 2 góc kề bù=> AHB+AHC =180o

mà AHB=AHC (cmt) => 2AHB =180o

                               => AHB=AHC= 180o/2=90o

mà AH nằm giữa AB và AC=> AH vuông góc BC.

c. Ta có: AD= AB+BD

             AE= AC+CE

    mà AB=AC(gt), BD=CE(gt) => AD=AE

Vì TG ABH= TG ACH (cmt) => góc BAH= góc CAH ( 2 góc tương ứng)

Xét TG HAD và TG HAE, ta có:

AD=AE (cmt), góc HAB= góc HAE (cmt), AH: cạnh chung

=> TG HAD = TG HAE (c.g.c).

10 tháng 1 2016

chứng minh dài lắm, mỏi tay

13 tháng 1 2016

ước lượng thôi duong nguyen