K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

a) ta có tam giác ABC cân tại A

=> góc B= góc C

=> 1/2 góc C= 1/2 góc B

=> ABE=ACF

xét tam giác ABE và tam giác AFC có:

AB=AC(gt)

A(chung)

ABE=ACF(cmt)

=> tam giac ABE= tam giác ACF(g.c.g)

=> AF=AE

=> tam giác AEF cân tại A

b)

ta có góc B= góc C

=> 1/2 góc B=1/2 góc C=>EBC=FCB

theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)

=> BE=CF

xét tam giác BFC vá tam giác CEB có

BE=CF(tam giác ABE= tam giác ACF)

FCB=ECB(cmt)

BC(chung)

=> tam giác BFC= tam giác CEB(c.g.c0

c)

tam giác AFE cân tại A

=>góc AFE=(180*-A)/2

tam giác ABC cân tại B=>ABC=(180*-A)/2

=> ABC=AFE

=> FE//BC(1)

ta có: FB=AB-AF

          EC=AC-AE

          AB=AC

        AF=AE

=> FB=EC(2)

từ (1)(2)=> tứ giác BFEC là hình thang cân

21 tháng 3 2021

nhonhunggiúp với ạ

 

a) Xét ΔBFC vuông tại F và ΔCEB vuông tại E có 

BC chung

\(\widehat{FBC}=\widehat{ECB}\)(hai góc ở đáy của ΔBAC cân tại A)

Do đó: ΔBFC=ΔCEB(cạnh huyền-góc nhọn)

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

a) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay ED\(\perp\)BC(Đpcm)

17 tháng 3 2016

a) xét tg HAB và tg HAC có AB=AC(gt);góc AHB=góc  AHC(=90 độ),chung AH

=>tg HAB và tg HAC bằng nhau (c.g.c)

b)=>HB=HC =>H là tđ BC. ta có tg ABH vuông tại H

                   =>AB^2=BH^2+AH^2 ( do H là tđ BC(cmt) vàBC=16cm(gt))+định lí pytago

                     hay 10^2=8^2+AH^2

                                AH^2=36

                        => AH=6

c)có tg hab=tg hac=>bah=cah

xét tg eah và tg fah có: chung ah

                                 bah=cah(cmt)

                                  aeh=afh

=>tg eah=tg fah =>af=ae.MÀ ab=ac(gt)=>fc=be

=>tg hbe=tg hcf(c.g.c)

d)cmt.có af=fe(cmt)=>tgaef cân

k dúng mình cái mình làm bài này mệt lắm r

28 tháng 3 2020
  • a) Xét hai tam giác vuông ΔBEFΔBEF và ΔBACΔBAC có:

    BF=BCBF=BC (do ΔBFCΔBFC cân đỉnh B)

    ˆBB^ chung

    ⇒ΔBEF=ΔBAC⇒ΔBEF=ΔBAC (cạnh huyền-góc nhọn).

    b) ΔBEF=ΔBAC⇒ˆBFE=ˆBCAΔBEF=ΔBAC⇒BFE^=BCA^ (hai tương ứng)

    Mà ΔBFCΔBFC cân đỉnh BB nên: ˆBFC=ˆBCFBFC^=BCF^

    ˆBFC−ˆBFE=ˆBCF−ˆBCABFC^−BFE^=BCF^−BCA^

    ⇒ˆEFC=ˆACF⇒EFC^=ACF^ hay ˆDFC=ˆDCF⇒ΔDFCDFC^=DCF^⇒ΔDFC cân đỉnh D⇒DF=DCD⇒DF=DC

    Xét ΔBFDΔBFD và ΔBCDΔBCD có:

    BF=BCBF=BC (giả thiết)

    BDBD chung

    DF=DCDF=DC (cmt)

    ⇒ΔBFD=ΔBCD⇒ΔBFD=ΔBCD (c.c.c)

    ⇒ˆFBD=ˆCBD⇒FBD^=CBD^ (hai góc tương ứng)

    ⇒BD⇒BD là phân giác ˆFBCFBC^.

    c) ΔBEF=ΔBAC⇒BE=BAΔBEF=ΔBAC⇒BE=BA

    ⇒BF−BA=BC−BE⇒BF−BA=BC−BE hay AF=ECAF=EC

    Xét ΔAFMΔAFM và ΔECMΔECM có:

    FM=CMFM=CM (do M là trung điểm cạnh FC)

    ˆAFM=ˆECMAFM^=ECM^ (giả thiết)

    AF=ECAF=EC (cmt)

    ⇒ΔAFM=ΔECM⇒ΔAFM=ΔECM (c.g.c)

    ⇒MA=ME⇒MA=ME lại có BA=BE⇒MBBA=BE⇒MB là trung trực của AEAE

    ⇒MB⊥AE⇒MB⊥AE.

24 tháng 4 2017

xaet1 tam giác AEM và tam giác AFM có :

AE=AF(GT)

EAM=FAM(ABC cân tại A;AM là trung tuyến)

AM Cạnh chung

=>tam giác AEM=AFM (c.g .c )

=>ME=MF(cạnh tương ứng)

=> AEM=AFM (góc tương ứng)

b) vì AEM=AFM (theo a)

=>AEF là tam giác cân tại A(tính chất tam giác cân)

mk lm được nhiu ak