Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
a) Gọi số đo góc C là x (độ) (0<x<70). => Số đo góc B là x + 40 (độ).
Tổng 3 góc trong 1 tam giác là 180 độ. => Số đo góc A là 180 - (x + 40) - x = 140 - 2x (độ).
AM phân giác góc BAC. => Số đo góc BAM = Số đo góc CAM = (140 - 2x) : 2 = 70 - x (độ).
Tổng 3 góc trong tam giác AMC là 180 độ. => Số đo góc AMC = 180 - Số đo góc CAM - Số đo góc C = 180 - (70 - x) - x = 110 (độ).
Đáp số: Số đo góc AMC = 110 độ.
b) D là trung điểm BC, ED vuông góc với BC. => Tam giác EBC cân tại E. => Số đo góc EBC = Số đo góc ECB = x (độ).
Mà số đo góc ABC là (x + 40) (độ). => Số đo góc ABE = Số đo góc ABC - Số đo góc EBC = (x + 40) - x = 40 (độ).
Đáp số: Số đo góc ABE = 40 độ.
A B C M D E
a, góc BAH = góc HCA vì cùng phụ vời góc HAC
b, Kẻ DK vuông góc với AC.
BA= BD(gt) nên tam giác ABD cân tại A
Suy ra: góc BAD= góc BDA
Mà góc BDA +góc HAD = 90 độ (vì tam giác AHD vuông tại A) ,góc BAD+ góc KAD =góc BAC =90 độ
Do đó: góc HAD =góc KAD
Chứng minh được tam giác HAD =tam giác KAD (cạnh huyền-góc nhọn)
Dẫn đến góc HAD =góc KAD hay góc HAD= góc DAC và lại có tia AD nằm giữa 2 tia AH,AC
Vậy AK là tia p/g của góc HAC
c, tam giác HAD= tam giác KAD(cmt) nên AH=AK
DH=DK (1)
tam giác DKC vuông tại K nên DK<DC (2) và KC<DC
TỪ (1) và (2) suy ra: DH<DC
d, Ta có: AB =BD(gt), AK =AH(cmt) và KC<DC(cmt)
Do đó: AB +AK +KC < BD +AH +DC
Nên : AB+AC < BC+AH < BC +2AH
Vậy AB+AC < BC+ 2AH
A B C D E K
Bài làm
Gọi đường thẳng đi qua điểm D cắt BE tại I
Ta có: \(\widehat{KDA}=\widehat{BDI}\)
Xét tam giác BDI có:
\(\widehat{BDI}+\widehat{DBI}=90^0\) ( 1 )
Xét tam giác BAE có:
\(\widehat{ABE}+\widehat{BEA}=90^0\) ( 2 )
Từ ( 1 ) và ( 2 ) => \(\widehat{BDI}=\widehat{BEA}\)
Mà \(\widehat{KDA}=\widehat{BDI}\)( cmt )
=> \(\widehat{KDA}=\widehat{BEA}\)
Xét tam giác KDA và tam giác BEA có:
\(\widehat{DAK}=\widehat{BAE}\)
AD = AE ( giả thiết )
\(\widehat{KDA}=\widehat{BEA}\)
=> Tam giác KDA = tam giác BEA ( g.c.g )
=> AK = AB ( hai cạnh tương ứng )
Mà AB = AC ( giả thiết )
=> AK = AC ( đpcm )
# Học tốt #
a)
Vì AB//DE ⇒BADˆ=ADEˆ⇒BAD^=ADE^(so le trong)
mà BADˆ=DAEˆBAD^=DAE^(gt) ⇒DAEˆ=ADEˆ⇒DAE^=ADE^ hay ΔAEDΔAED cân tại E⇒AE=ED⇒AE=ED(1)
b)
Xét ΔKEBΔKEB và ΔDBEΔDBE có:
KBEˆ=BEDˆKBE^=BED^(BA//BE)
BE cạnh chung
KEBˆ=EBDˆKEB^=EBD^(KE//BC)
⇒ΔKEB=ΔDBE⇒ΔKEB=ΔDBE(G-C-G)
⇒BK=DE⇒BK=DE(2)
Từ (1) và (2) ⇒BK=AE
chúc bạn học tốt ❤❤❤😀😀😀😀😀😀🎈🎈
b) Vì H là trung điểm BC
=> BH = HC
Mà BH = BE (gt)
=> BH = HC = BE
Vì ∆ABC cân tại A
=> AB = AC
Mà AB = CD (gt)
=> AB = AC = CD
Ta có :
EB + AB = AE
HC + CD = HD
=> AE = HD
a) Ta có :
ACB là góc ngoài tại C của ∆ACD
Vì CA = CD
=> ∆ACD cân tại C
=> D = DAC = 2D
=> ACB = D + CAD = 2D
=> D = \(\frac{1}{2}ACB\:=\frac{1}{2}ABC\)(dpcm)