K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 6 2016
Vào đây Câu hỏi của Nguyễn Đình Thi - Toán lớp 9 - Học toán với OnlineMath
2 tháng 6 2016
- Gọi a,b,c là các cạnh của tam giác ABC tương ứng với các cạnh BC;AC;AB. Vì bán kính đường tròn nội tiếp r = 1 nên dễ thấy diện tích tam giác ABC là: \(S_{ABC}=\frac{1}{2}r\cdot\left(a+b+c\right)=\frac{1}{2}\left(a+b+c\right)\)(1)
- Gọi \(h_a;h_b;h_c\)lần lượt là độ dài các đường cao ứng với các cạnh a;b;c. nên:\(S_{ABC}=\frac{1}{2}ah_a=\frac{1}{2}bh_b=\frac{1}{2}ch_c\)
(2)
- Từ (1) và (2) ta suy ra: \(ah_a=bh_b=ch_c=\left(a+b+c\right)\)
- Hay: \(\frac{a}{\frac{1}{h_a}}=\frac{b}{\frac{1}{h_b}}=\frac{c}{\frac{1}{h_c}}=\frac{a+b+c}{\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}}=a+b+c\)
- Nên: \(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}=1\)
- Giải phương trình này với các nghiệm \(h_a;h_b;h_c\)nguyên dương với giả thiết \(h_a\ge h_b\ge h_c\)
- \(h_c=1\)=> ko có \(h_a;h_b\)thỏa mãn.
- \(h_c=2\)thì \(h_b\)ko thể =2 vì ko có \(h_a\)thỏa mãn; nếu \(h_b=3\)thì \(h_a=6\); nếu \(h_b\ge4\)thì \(h_a\le4\)trái giả thiết nên loại.
- \(h_c=3\)thì \(h_b=3;h_a=3\)
- Nếu \(h_c>3\)thì \(\frac{1}{h_c}< \frac{1}{3}\)số lớn nhất nhỏ hơn trung bình cộng 3 số, vô lý=> Loại.
- Đối với nghiệm \(h_a;h_b;h_c\)=(6;3;2) có 1 đường cao bằng 2 tức là gấp 2 lần bán kính đường tròn nội tiếp - vô lý nên bị loại (Bạn có thể vẽ hình để chứng minh).
- Nên chỉ có 1 nghiệm \(h_a;h_b;h_c\)=(3;3;3) thỏa mãn và khi đó các cạnh \(a=b=c=2\sqrt{3}\)
I
21 tháng 4 2020
ta có
\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)
=> \(\widehat{AEH}+\widehat{AFH}=180^0\)
=> tứ giác AEHF nội tiếp được nhé
ta lại có AEB=ADB=90 độ
=> E , D cùng nhìn cạnh AB dưới 1 góc zuông
=> tứ giác AEDB nội tiếp được nha
b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)
hai tam giác zuông ADB zà ACK có
ABD = AKC ( góc nội tiếp chắn cung AC )
=> tam giác ABD ~ tam giác AKC (g.g)
c) zẽ tiếp tuyến xy tại C của (O)
ta có OC \(\perp\) Cx (1)
=> góc ABC = góc DEC
mà góc ABC = góc ACx
nên góc ACx= góc DEC
do đó Cx//DE ( 2)
từ 1 zà 2 suy ra \(OC\perp DE\)
bạn xem ở đây nhé, có lời giải: Câu hỏi của Nguyễn Đình Thi - Toán lớp 9 - Học toán với OnlineMath