\(\widehat{A}\ne90^o\), \(\widehat{B},\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2015

gọi giao điểm của AB vs DH là N; giao điểm của AC vs EH là M

xét tam giác DIN và tam giác HIN = nhau(c.g.c) suy ra IN hay IB là phân giác góc DIH

xét tam giác MKH và tam giác MKE = nhau (c.g.c) suy ra kc là phân giác góc MKE

ta lại có HA là phân giác góc HIK( NA,MA là phân giác góc ngoài)

mà góc AHC=90 độ(gt) suy ra HC là phân giác góc ngoài tam giác HIK tại đỉnh H

mà KC là phân giác góc ngoài tam giác HIK tại đỉnh K

suy ra IC là phân giác góc KIH

mà IB là phân giác góc DIH

góc KIH + góc DIH=180 độ( kề bù) suy ra góc BIC=90 độ

suy ra góc AIC=90 độ

góc AKB cm tương tự = 90 độ

 

12 tháng 2 2017

tuy mk ko biết chắc cách giải nhưng mk chắc bạn Đức làm sai rồi!

16 tháng 8 2017

A B C I K

Xét tam giác BKI và CKI

Ta có BI=CI; IK chung; KC=KB (Vì K nằm trên AI)

Suy ra Tam giác BKI=Tam giác CKI => Góc KBI=Góc KCI

Mà Góc ABI=Góc ACI (Vì tam giác ABC cân)

Suy ra: Góc ABI+Góc KBI=Góc ACI+Góc KIC= 900

=> KC vuông góc với AC

16 tháng 8 2017

CM t/g ABK = t/g ACK => góc ABK = góc ACK => góc ACK = 90 độ => AC vuông góc với KC  

21 tháng 11 2019

Xét \(\Delta\)OAD và \(\Delta\)OBD có :

OD : cạnh chung

OÂD = Góc OBD ( = 90° )

AÔD = BÔD ( vì Oz là phân giác của xÔy )

\(\Rightarrow\)\(\Delta\)OAD = \(\Delta\)OBD ( cạnh huyền - góc nhọn )

\(\Rightarrow\)AD = BD ( 2 cạnh tương ứng )

\(\Rightarrow\)D là trung điểm AB

21 tháng 11 2019

cậu làm hộ mình câu tiếp theo của bài này nhé!

2.Qua D kẻ đường thẳng vuông góc với tia Ox tại M cắt tia Oy tại F.Qua D kẻ đường thẳng vuông góc với tia Oy  tại N cắt tia Ox tại E.CM rằng:

a,DB là tia p/g của \(\widehat{NDF}\)

b,MN // AB

a: Xét ΔABD và ΔKBD có

BA=BK

góc ABD=góc KBD

BD chung

Do đó: ΔABD=ΔKBD

Suy ra: DA=DK

b: Ta có: ΔBAD=ΔBKD

nên góc BKD=góc BAD=90 độ

=>DK vuông góc với BC

=>DK//AH

19 tháng 7 2018

a ) 

Xét \(\Delta ABI\)và  \(\Delta ACI\) có : 

\(\hept{\begin{cases}AB=AC\left(GT\right)\\AI\left(chung\right)\\BI=CI\left(GT\right)\end{cases}\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)}\)

\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)( 2 góc tương ứng ) 

     \(\widehat{BAI}=\widehat{CAI}\)( 2 góc tương ứng ) 

Mà \(AI\)nằm trong  \(\widehat{BAC}\)

\(\Rightarrow AI\)là p/g \(\widehat{BAC}\)

b ) 

Ta có : \(\widehat{ABI}+\widehat{ABM}=180^0\) ( 2 góc kề bù ) 

\(\Rightarrow\widehat{ABM}=180^0-\widehat{ABI}\)

\(\widehat{ACI}+\widehat{ACN}=180^0\)( 2 góc kề bù ) 

\(\Rightarrow\widehat{ACN}=180^0-\widehat{ACI}\)

Lại có : \(\widehat{ABI}=\widehat{ACI}\)

\(\Rightarrow180^0-\widehat{ABI}=180^0-\widehat{ACI}\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét \(\Delta ABM\)và \(\Delta ACN\)có : 

\(\hept{\begin{cases}AB=AC\left(GT\right)\\\widehat{ABM}=\widehat{ACN}\\BM=CN\left(GT\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)}\)

\(\Rightarrow AM=AN\)( 2 cạnh tương ứng ) 

c ) 

Do \(\widehat{BAI}=\widehat{CAI}\left(theo:a\right)\)

hay \(\widehat{BAK}=\widehat{CAK}\)

Xét \(\Delta ABK\)và \(\Delta ACK\)có : 

\(\hept{\begin{cases}AB=AC\left(GT\right)\\\widehat{BAK}=\widehat{CAK}\left(cmt\right)\Rightarrow\\AK\left(chung\right)\end{cases}\Delta ABK=\Delta ACK\left(c.g.c\right)}\)

\(\Rightarrow\widehat{ABK}=\widehat{ACK}\)( 2 góc tương ứng ) 

Mà \(\widehat{ABK}=90^0\left(BK\perp AB\right)\)

\(\Rightarrow\widehat{ACK}=90^0\)

\(\Rightarrow KC\perp AC\left(Đpcm\right)\)

14 tháng 8 2017

c) Ta có ΔEBD =  ΔABD (cmt)

Nên ^BED=^BAD=90°

Do đó DE ⊥ BC

d)Xét 2 tam giác vuông DAK và DEC có

^ADK=^EDC (đối đỉnh)

Vậy ΔDAK = ΔDEC

=> DK=DC

     AK=EC

14 tháng 8 2017

ý d sao có mỗi trường hợp vậy bạn?????????????????

12 tháng 8 2017

a, Xét tam giác ABC vuông tại A có:

AB2+AC2=BC( định lý py-ta-go)

mà AB=9 cm(gt),AC=12cm(gt)nên:

92+122=BC2

=>BC2=81+144

=>BC2=225

=>BC2=152

=>BC=15(cm)

12 tháng 8 2017

b, Xét tam giác ABD và tam giác MBD có:

             ABD=MBD(vì BD là tia phân giác)

              BD chung

            \(\widehat{BAD}=\widehat{BMD}\left(=90^{ }\right)\)

            => tam giác ABD= tam giác MBD ( cạnh huyền góc nhọn )