\(\widehat{A}=90do\).Tia pg \(\widehat{B}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\widehat{BAD}+\widehat{ABD}+\widehat{ADB}=\widehat{CAD}+\widehat{ACD}+\widehat{ADC}\)

mà \(\widehat{BAD}=\widehat{CAD}\)

nên \(\widehat{ABD}+\widehat{ADB}=\widehat{ACD}+\widehat{ADC}\)

=>\(\widehat{ADB}+30^0+\widehat{C}=\widehat{ADC}+\widehat{C}\)

\(\Leftrightarrow\widehat{ADB}-\widehat{ADC}=-30^0\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)

nên \(\widehat{ADB}=\dfrac{180^0-30^0}{2}=75^0\)

=>\(\widehat{ADC}=105^0\)

27 tháng 2 2018

thực chất nó rất đơn giản

17 tháng 4 2019

Hình tự vẽ:

a) AC = ?

Vì ΔABC cân tại A nên: AC = AB = 4 (cm)

b) So sánh: ∠ABC và ∠ACB, AC và AD

Vì ΔABC cân tại A nên: ∠ABC = ∠ACB

Vì ∠ABD = ∠ACB (gt) và ∠ABC = ∠ACB (cmt) 

Mà AD € AC ⇒ D ≡ C ⇒ AC = AD

c) AE đi qua trung điểm của BC

Vì D ≡ C nên: AE ⊥ AC.

Xét hai tam giác vuông ABE và ACE có:

AB = AC (câu a)

∠B = ∠C (góc ở đáy)

Do đó: ΔABE = ΔACE (cạnh huyền - góc nhọn)

⇒ BE = CE (hai cạnh tương ứng)

⇒ E là trung điểm của BC

⇒ AE đi qua trung điểm của BC

d) AG = ?

Vì E là trung điểm của AC nên: BE = CE = BC : 2 = 5 : 2 = 2,5 (cm)

Áp dụng định lí Pytago vào ΔABE vuông tại E, ta có:

AB2 = AE2 + BE2  ⇒ AE= AB2 - BE= 42 - 2,5= 16 - 6,25 = 9,75 (cm) ⇒ AE = \(\sqrt{9,75}\)

Vì BM cắt AE tại G nên G là trọng tâm của ΔABC, suy ra:

AG = \(\frac{2}{3}\)AE = \(\frac{2}{3}.\sqrt{9,75}=\frac{2.\sqrt{9,75}}{3}=\frac{\sqrt{39}}{3}\)

15 tháng 8 2017

Do AD là tia phân giác A => \(\widehat{A_1}=\widehat{A}_2\)

Xét tam giác ADB có:\(\widehat{A_1}+\widehat{ADB}+\widehat{B}=180\)

Hay A1 + 80 + B = 180 => A1 + B = 100 (1)

Do góc ADB + ADC = 180 (Kề bù)

=> 80+ ADC = 180

ADC = 100

Xét tam giác ADC có: \(\widehat{A_2}+\widehat{ADC}+\widehat{C}=180\)

A2 + 100 + C = 180

A2 + C = 80 (2)

Từ 1, 2, có: A2 + C + 20 = A1 + B = 100

=> A1 + C + 20 = A1 + 3/2C

3/2C - C = 20

=> 1/2C= 20

C= 40

Mà B = 3/2 C => B = 3/2 . 40 = 60

Xét tam giác ABC có: A+B+C = 180

hay A + 60+40=180

A= 80

Vậy ...........

2/ 

15 tháng 8 2017

Xét tam giác ABC có : A + B + C = 180 => B+C = 180 - A => B+C = 180 - 80 => B+C = 100 

Do BI;CI lần lượt là phân giác của B; C => B1 = B2 = 1/2 B ; C1 = C2 = 1/2 C 

Xét tam giác IBC có: 

B2+BIC+C2 = 180 

(B2+C2) + BIC = 180

1/2 B + 1/2 C + BIC = 180

1/2 ( B+C) +BIC = 180

hay 1/2 . 100 + BIC = 180

BIC = 180 - 50

BIC = 130

Vậy ...

24 tháng 5 2017


\(a.\) Ta có: \(\widehat{B}=2\widehat{C}\)suy ra \(\widehat{C}=\frac{\widehat{B}}{2}\)                                                    \(\left(1\right)\)
Vì \(BD\)là tia phân giác của \(\widehat{B}\)suy ra \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}\)                \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{ABD}=\widehat{DBC}=\widehat{C}\)
- Xét \(\Delta ABD\)có     \(\widehat{ADB}+\widehat{DBA}+\widehat{BAD}=180^0\)(đ/lý tồng 3 góc trong cùng 1 tam giác)
                         \(\Rightarrow\)\(\widehat{ADB}+\widehat{BAD}=180^0-\widehat{DBA}\)
- Xét \(\Delta ABC\)có       \(\widehat{BAC}+\widehat{ACB}+\widehat{CBA}=180^0\)
                         \(\Rightarrow\) \(\widehat{BAC}+\widehat{CBA}=180^0-\widehat{ACB}\)
        mà  \(\widehat{ACB}=\widehat{ABD}\)(cmt)     suy ra  \(\widehat{BAC}+\widehat{CBA}=\widehat{ADB}+\widehat{BAD}\)

- Xet  \(\Delta ABD\)có  \(\widehat{ABE}\)là góc ngoài tại đỉnh \(B\)
                     suy ra  \(\widehat{ABE}=\widehat{ADB}+\widehat{BAD}\) 
- Xet  \(\Delta ABC\)có  \(\widehat{ACK}\)là góc ngoài tại đỉnh \(C\)
                     suy ra  \(\widehat{ACK}=\widehat{ABC}+\widehat{BAC}\) 
    mà    \(\widehat{BAC}+\widehat{CBA}=\widehat{ADB}+\widehat{BAD}\)        \(\Rightarrow\)đpcm

24 tháng 5 2017

\(b.\)  Xét  \(\Delta AEB\)và  \(\Delta KCA\) có:     \(AB=CK\)         ( gt )
                                                             \(\widehat{ABE}=\widehat{ACK}\)      ( cmt )
                                                                \(EB=AC\)          ( gt )
                   Do đó  \(\Delta AEB\)\(=\)\(\Delta KCA\) (c.g.c)

Bài 2: 

\(\widehat{xAy}=\widehat{x'Ay'}=47^0\)(hai góc đối đỉnh)

\(\widehat{xAy'}=180^0-\widehat{xAy}=133^0\)(hai góc kề bù)

=>\(\widehat{x'Ay}=133^0\)(hai góc đối đỉnh)