\(\widehat{A}=80^o;\widehat{B}=40^o.\)Tia PG của \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

A B C D 80^o 40^o 1 2
GT \(\Delta ABC\)có
       \(\widehat{A}\)= 80o
       \(\widehat{B}\)= 40o
       Tia phân giác của \(\widehat{C}\)cắt AD
KL   \(\widehat{CDA}?\)\(\widehat{CDB}?\)
Giải: 
Trong \(\Delta\)ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}\)= 180o (Định lí)
=> \(\widehat{C}=180^o-\left(\widehat{A}+\widehat{B}\right)\)
Mà \(\widehat{A}=80^o\)(GT)
      \(\widehat{B}=40^o\)(GT)
Ngoặc ''}'' 3 điều trên
=> \(\widehat{C}=180^o-\left(80^o+40^o\right)\)
=> \(\widehat{C}=180^o-120^o=60^o\)(1)
Vì CD là tia phân giác của \(\widehat{C}\)
=> \(\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\)(Tính chất)
Mà \(\widehat{C}=60^o\)(Theo (1))
Ngoặc ''}'' 2 điều trên
=> \(\widehat{C_1}=\widehat{C_2}=\frac{60^o}{2}=30^o\)(2)
\(\widehat{CDB}\)là góc ngoài đỉnh D của \(\Delta CAD\)
=> \(\widehat{CDB}=\widehat{A}+\widehat{C_1}\)(Định lí)
Mà \(\widehat{A}=80^o\)(GT)
      \(\widehat{C_1}=30^o\)(Theo (2))
Ngoặc ''}'' 3 điều trên
=> \(\widehat{CDB}=80^o+30^o=110^o\)
\(\widehat{CDA}\)là góc ngoài đỉnh D của \(\Delta CBD\)
=> \(\widehat{CDA}=\widehat{B}+\widehat{C_2}\)(Định lí)
Mà \(\widehat{B}=40^o\)(GT)
      \(\widehat{C_2}=30^o\)(Theo (2))
Ngoặc ''}'' 3 điều trên
=> ​​\(\widehat{CDA}=40^o+30^o=70^o\)
V
ậy \(\widehat{CDA}\) = 70o; \(\widehat{CDB}\) = 110o
 

29 tháng 2 2020

\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(3.2\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{3^6.2^6.2^9}\)

\(=3^2\)

\(=9\)

19 tháng 10 2019

KHÙNG

19 tháng 10 2019

ừ thì ko cần vẽ hình nữa

16 tháng 7 2018

rrrrrrrrrrrrrrrrrrrrrrrrrr

16 tháng 7 2018

A B C D K M

a, Xét t/g ABD và t/g ACD có:

AB=AC(gt),BD=CD(gt),AD chung 

=> t/g ABD = t/g ACD (c.c.c)

=> góc DAB = góc DAC (2 góc tương ứng)

=> AD là tia p/g của góc BAC

b, Ta có: \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-20^o}{2}=80^o\) (tam giác ABC cân tại A)

Vì t/g DBC đều => góc DBC = góc DCB = góc BDC = 60 độ

=> góc ABD = góc ABC - góc DBC = 80 độ - 60 độ = 20 độ

=> góc BAC = góc ABD = 20 độ

Lại có: góc ABM = góc DBM = góc ABC / 2 = 20 độ/2 = 10 độ (BM là tia p/g của góc ABD)

góc DAB = góc DAC = góc BAC/2 = 20 độ / 2 = 10 độ (AD là tia p/g của góc BAC)

=> góc ABM = góc DAB = 10 độ

Xét t/g ABM và t/g BAD có:

góc ABM = góc DAB (c/m trên), AB chung, góc BAM = góc ABD (c/m trên)

=> t/g ABM  = t/g BAD (g.c.g)

=>AM = BD (2 cạnh tương ứng)

Mà BD = BC (t/g DBC đều)

=> AM = BC 

P/s: hình vẽ minh họa thôi

1) Tam giác ABC vuông tại A, có góc B bằng 60o. CM là tia phân giác góc ACB. Tính số đo góc AMC2) Cho \(\Delta ABC\)có AB<BC. Trên tia BA lấy điểm D sao cho BC=BD. Tia phân giác của góc B cắt cạnh AC ở E. Gọi K là trung điểm của DC.a) Chứng minh: ED=ECb) Chứng minh: \(EK\perp DC\)Các bạn chỉ cần làm b) của 2) thôi nhé! Khỏi cần vẽ hình cũng đc. Mình đã làm đc 1) và a) của 2) rồi nên bạn nào lười chỉ cần...
Đọc tiếp

1) Tam giác ABC vuông tại A, có góc B bằng 60o. CM là tia phân giác góc ACB. Tính số đo góc AMC

2) Cho \(\Delta ABC\)có AB<BC. Trên tia BA lấy điểm D sao cho BC=BD. Tia phân giác của góc B cắt cạnh AC ở E. Gọi K là trung điểm của DC.

a) Chứng minh: ED=EC

b) Chứng minh: \(EK\perp DC\)

Các bạn chỉ cần làm b) của 2) thôi nhé! Khỏi cần vẽ hình cũng đc. Mình đã làm đc 1) và a) của 2) rồi nên bạn nào lười chỉ cần làm phần b) giúp mình thôi nhé! Nếu có sai sót thì các bạn sửa giúp mình. Thanks! 

1) Xét \(\Delta ABC\)có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)

\(90^o+60^o+\widehat{ACB}=180^o\)

\(150^o+\widehat{ACB}=180^o\)

\(\widehat{ACB}=180^o-150^o\)

Vậy \(\widehat{ACB}=30^o\)

Mà CM là tia phân giác góc \(\widehat{ACB}\)nên:

\(\widehat{ACM}=\widehat{MCB}=\frac{\widehat{ACB}}{2}=\frac{30^o}{2}=15^o\)

Vậy \(\widehat{ACM}=\widehat{MCB}=15^o\)

Xét \(\Delta AMC\)có:

\(\widehat{BAC}+\widehat{AMC}+\widehat{ACM}=180^o\)

\(90^o+\widehat{AMC}+15^o=180^o\)

\(105^o+\widehat{AMC}=180^o\)

\(\widehat{AMC}=180^o-105^o\)

Vậy \(\widehat{AMC}=75^o\)

2) a) Xét \(\Delta ADE\)và \(\Delta CKE\) có:

AE=CE (E là tia phân giác cạnh AC)

\(\widehat{DEA}=\widehat{KEC}\) (đối đỉnh)

\(\widehat{C}\): Cạnh chung

Vậy \(\Delta ADE=\Delta CKE\) (g-c-g)

Suy ra: ED=EC (hai cạnh tương ứng)

b) Chứng minh: \(EK\perp DC\)

1
17 tháng 12 2018

Xét tg BDK,có:

BD=BC(gt)

DE=CE(theo phần a)

DK=CK(gt)

=>B,E,K thẳng hàng

và BK là đưòng trung trực của tg BDK

mà \(K\in DC\)

=>BK \(\perp\)DC hay \(KE\perp DC\)

hay EK 

4 tháng 12 2019

Xét \(\Delta AIC\)\(\Delta ABC\)Ta có : \(\frac{A}{2}+\frac{C}{2}+I=A+B+C=180^0\)

\(=>A+B+C-\frac{A}{2}-\frac{C}{2}-I=0\)

\(=>\frac{A}{2}+\frac{C}{2}+B-I=0\)

Vì \(\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^0\)(Nửa tam giác)

\(=>\frac{A}{2}+\frac{C}{2}+\frac{B}{2}+\frac{B}{2}-I=0\)

\(=>90^0+30^0=I\)

\(=>I=120^0\)Hay \(AIC=120^0\)

18 tháng 1 2019

đúng đó

18 tháng 1 2019

A B C K

Tam giác ABK là tam giác đều.

3 tháng 3 2019

hình như bạn chép sai đề vì mình thấy nó hơi thiếu dữ kiện để chứng minh

3 tháng 3 2019

phân giác BE thì E thuộc AH hay là AC

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20

10 tháng 6 2019

x O y y' x' t t'

+) Tính \(\widehat{yOx'}\)

Ta có: \(\widehat{yOx'}+\widehat{xOy}=180^0\)(kề bù)

hay \(\widehat{yOx'}+36^0=180^0\)

\(\Leftrightarrow\widehat{yOx'}=180^0-36^0\)

\(\Leftrightarrow\widehat{yOx'}=144^0\)

Vậy \(\widehat{yOx'}=144^0\)

+) Tính \(\widehat{y'Ox'}\)

Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox'}\) và \(\widehat{yOx}\)là hai góc đối đỉnh.

\(\Rightarrow\widehat{y'Ox'}=\widehat{xOy}=36^0\)

Vậy \(\widehat{y'Ox'}=36^0\)

+) Tính \(\widehat{y'Ox}\)

Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox}\) và \(\widehat{yOx'}\)là hai góc đối đỉnh.

\(\Rightarrow\widehat{yOx'}=\widehat{xOy}'=144^0\)

Vậy \(\widehat{y'Ox}=144^0\)

b) Vì \(\widehat{y'Ox'}=\widehat{xOy}\)mà Ot là tia phân giác của \(\widehat{xOy}\),mà Ot' là tia phân giác của \(\widehat{x'Oy'}\)nên Ot và Ot' (điều hiển nhiên)