Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
Xét \(\Delta ABD\)có \(\widehat{A}\)tù \(\Rightarrow BA< BD\)(1); \(\widehat{ADB}< 90^o\)
\(\Rightarrow\widehat{BDE}>90^o\)\(\Rightarrow\Delta BDE\)tù tại D \(\Rightarrow BD< BE\)(2); \(\widehat{BED}< 90^o\)
\(\Rightarrow\widehat{BEC}>90^o\)\(\Rightarrow\Delta BEC\)tù tại E \(\Rightarrow BE< BC\)(3)
Từ (1), (2), (3) \(\Rightarrow BA< BD< BE< BC\left(đpcm\right)\)
a )
ta có : \(\widehat{C_1}=\widehat{C_2}\) ( 2 góc đối đỉnh )
mà \(\widehat{C_1}=\widehat{B}\) ( tam gíac ABC cân tại A )
Do do : \(\widehat{C_2}=\widehat{B}\)
xét \(\Delta ABDva\Delta ICE,co:\)
AB = AC = IC ( gt )
BD=CE ( gt )
\(\widehat{C_2}=\widehat{B}\) (cmt )
Do do : \(\Delta ABD=\Delta ICE\left(c-g-c\right)\)
Trong có góc BAD tù nên góc BAD > góc ADB => BD > BA. (1)
Ta có góc BDE = góc BAD + góc ABD (vì ...)
Suy ra góc BDE là góc tù, vậy góc BDE là góc lớn nhất trong 3 góc của tam giác BDE.
Trong tam giác BDE ta có: góc BDE > gocsBED => BE > BD. (2)
Tương tự có góc BEC tù, trong tam giác BEC có góc BEC > góc BCE => BC > BE (3)
Từ 1, 2 và 3 suy ra: BA < BD < BE < BC (Đpcm)
Ta có hình vẽ :
A D E C B
Trong có góc BAD tù nên góc BAD > góc ADB
=> BD > BA . [1]
Ta có:
Góc BDE = góc BAD + góc ABD [vì ….]
=> góc BDE là góc tù ,vậy góc BDE là góc lớn nhất trong 3 góc của tam giác BDE
Trong tam giác BDE ta có:
Góc BDE > góc BED => BE > BD . [2]
Tương tự có góc BEC tù , rong tam giác BEC có góc BEC > góc BCE
=> BC > BE [3]
Từ 1,2 và 3 => BA < BD < BE \(\left(đpcm\right)\)