Cho tam giác ABC vuông tại C Vẽ Đường Tròn tâm O đường kính AC cắt AB tại D Gọi M là điể...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

A B O M H I K E N

1)  Ta thấy: Tứ giác AHMB nội tiếp đường tròn => ^HAM=^HBM; ^HMA=^HBA

Do H là điểm chính giữa của cung AM nên \(\Delta\)AHM cân tại H => ^HAM=^HMA

Từ đó suy ra: ^HBM=^HBA hay ^HBE=^HBA => BH là phân giác ^ABE

H thuộc nửa đường tròn đường kính AB => AH\(\perp\)BH hay BH\(\perp\)AE

Xét \(\Delta\)BAE: BH là phân giác ^ABE; BH\(\perp\)AE => \(\Delta\)BAE cân đỉnh B (đpcm).

2) Xét \(\Delta\)KHA và \(\Delta\)KAB:  ^KHA=^KAB (=900); ^AKB chung => \(\Delta\)KHA ~ \(\Delta\)KAB (g.g)

\(\Rightarrow\frac{KH}{KA}=\frac{KA}{KB}\Rightarrow KH.KB=KA^2\)(1)

Ta có: AE\(\perp\)BK tại H và AH=EH => A đối xứng với E qua BK => AK=KE. Thay vào (1):

\(\Rightarrow KH.KB=KE^2\)(đpcm).

3) Dễ thấy: 2 điểm A và N cùng nằm trên (B) => BA=BN => \(\Delta\)ABN cân đỉnh B

Mà BM\(\perp\)AN => BM là đường trung trực của AN hay BE là trung trực của AN

=> EA=EN => \(\Delta\)AEN cân đỉnh E = >^EAN=^ENA (2)

Lại có: ^HAM=^HBM (Cùng chắn cung HM) hay ^EAN=^EBI (3)

(2); (3) => ^ENA=^EBI hay ^ENI=^EBI => Tứ giác BIEN nội tiếp đường tròn (đpcm).

4) Ta có: ^KAB=900. Mà KA và AB đều cố định

Vậy để ^KAM=900 thì điểm M phải trùng với điểm B.

13 tháng 3 2015

ban tu ve hinh nhe

Ta co goc AEBnam ngoai dt nen goc AEB = 1/2(CUNG AB-cungHM)=1/2(cungHM+ cung MB)

ma goc Achan cung HB nen AEB=A nen tam giac AEB can o B

ban se de cm duoc AEBK thuoc 1dt nenKEB=90 nen KE^2=KH.KB

xet tam giac AEB co EI la duong cao con lai  nenEIM dong dang EAB nenEIM=EBA

ma EBA=MBN nen EIM=MBN

ma EIM VA MBNcung nhin EN nenIENB thuoc 1duong tron

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0

loading...

loading...

loading...

d: \(SA^2=SB\cdot SC\)

\(SE^2=SB\cdot SC\)

=>SA=SE

Xét ΔOAS và ΔOES có

OA=OE

SA=SE

OS chung

Do đó: ΔOAS=ΔOES

=>\(\widehat{OAS}=\widehat{OES}\)

mà \(\widehat{OAS}=90^0\)

nên \(\widehat{OES}=90^0\)

=>E nằm trên đường tròn đường kính SO

mà S,A,O,D cùng thuộc đường tròn đường kính SO(cmt)

nên E nằm trên đường tròn (SAOD)