Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: S CAB=1/2*CA*CB=1/2*CH*AB
=>CA*CB=CH*AB
b: AB=căn 6^2+8^2=10cm
CH=6*8/10=4,8cm
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔAHB\(\sim\)ΔCAB(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)
Vậy: AH=4,8cm; HB=3,6cm
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
câu cuối cm cái j z bạn
c b a h d e
cau a
tam giác hbc và tam giác cba có
góc c = góc chb = 90 độ
chung góc b
=> tam giác hbc đồng dạng với tam giác cba (gg)
tam giác abc vuông tại c
\(=>S_{abc}=\dfrac{bc.ac}{2}\left(1\right)\)
tam giác abc có ah đưòng cao
\(=>S_{abc}=\dfrac{ch.ab}{2}\left(2\right)\)
(1) và (2)
\(=>S_{abc}=\dfrac{bc.ac}{2}=\dfrac{ch.ab}{2}\\ =>\dfrac{bc.ac}{2}=\dfrac{ch.ab}{2}\\ =>bc.ac=ch.ab\)
câu cuối chứng minh cái j z?
chúc may mắn
Câu c đề yêu cầu tính khoảng cách từ trung điểm I của BA đến DE nha bạn, bạn giúp mình giải câu cuối với