K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

Hình (tự vẽ)

Xét hai tam giác vuông ABD và AHD có:

\(\widehat{BAD}=\widehat{HAD}\)(AD là phân giác)

AD: cạnh chung

Do đó: ΔABD = ΔAHD (cạnh huyền - góc nhọn)

⇒ BD = DH (cạnh tương ứng)

Xét hai tam giác vuông BID và HCD có:

BD = HD (cmt)

\(\widehat{BID}=\widehat{HCD}\)(đối đỉnh)

Do đó: ΔBID = ΔHCD (cạnh góc vuông - góc nhọn kề)

⇒ DI = DC (hai cạnh tương ứng)

⇒ DIC cân tại D.

29 tháng 6 2019

Hình dễ tự vẽ nhé bạn 

a ) Do \(DH\perp AC\Rightarrow\widehat{AHD}=90^o\)

Xét \(\Delta ABD\) và \(\Delta AHD\) có :
\(\widehat{BAD}=\widehat{HAD}\) ( AD là tia p/g )

AD là cạnh chung

\(\widehat{ABD}=\widehat{AHD}\left(=90^o\right)\)

nên \(\Delta ABD=\Delta AHD\left(g.c.g\right)\)

b ) Gọi K là giao điểm của BH và AD 

Xét \(\Delta BAK\)và \(\Delta HAK\) có :

AB = AH ( do \(\Delta ABD=\Delta AHD\))

\(\widehat{BAK}=\widehat{HAK}\) ( AD là tia p/g )

AK là cạnh chung

nên \(\Delta BAK=\Delta HAK\left(c.g.c\right)\)

=> BK = HK  ( 1 )

=> \(\widehat{AKB}+\widehat{AKH}=180^o\) ( hai góc kề bù )
     \(\widehat{AKB}+\widehat{AKB}=180^o\)

    \(\widehat{AKB}.2=180^o\)

\(\Rightarrow\widehat{AKB}=\frac{180^o}{2}=90^o\) ( 2 )

Từ ( 1 ) và ( 2 ) => AD là đường trung trực của BH 

c ) Xét \(\Delta BDI\) và \(\Delta HDC\) có :

\(\widehat{DBI}=\widehat{DHC}\left(=90^o\right)\)

BD = HD ( do \(\Delta ABD=\Delta AHD\) )

\(\widehat{BDI}=\widehat{HDC}\) ( hai góc đối đỉnh )

nên \(\Delta BDI=\Delta HDC\left(g.c.g\right)\)

=> DI = DC

=> \(\Delta DIC\)cân tại D

e ) Gọi M là điểm AD cắt IC

Ta có : 

AI = AB + BI 

AC = AH + HC 

mà AB = AH ( \(\Delta ABD=\Delta AHD\))

      BI = HC ( \(\Delta BDI=\Delta HDC\) )

=> AI = AC 

=> \(\Delta AIC\) cân tại A 

Lại có : \(CB\perp AI\)=> CB là đường cao ứng với cạnh AI

             \(IH\perp AC\)=> IH là đường cao ứng với cạnh AC

=> AM là đường cao thứ ba ( hay AD )

=> AM \(\perp\)IC

=> \(AD\perp IC\)

Tớ bổ sung ý d) cho Đường Tịch nè:

Ta có : tam giác DIC cân tại D 

=> ID = DC

Mà BD = HD (cmt)

=> BD = HD

Mà ta có BC = BD + DC

IH = ID + DH

=> BC = IH 

Xét tam giác vuông HIC và tam giác vuông BCI ta có : 

BC = IH 

IC chung

IBC = CHI = 90 độ

=> Tam giác HIC = tam giác BCI ( g.c.g) 

=> BI = HC (tg ứng)

Xét tam giác AKB và tam giác AKH ta có 

=> BAD = HAD ( AD là pg)

AK chung

AKB = AKH = 90 độ

=> Tam giác AKB = tam giác AKH (g.c.g)

=> AB =  AK 

Mà AI = AK + BI

AC = AH + HC 

=> AI = AC 

=> AIC cân tại A 

=> AIC = ACI 

Ta có AIC = ACI = 180 - A

Ta có AK = AH (cmt)

=> Tam giác BAH cân tại B 

=> ABH = AHB 

=> ABH = AHB = 180 - A

=> ABH = AHB = AIC = ACI ( cùng bằng 180 - A)

=> ABH = AIC 

Mà 2 góc này ở vị trí đồng vị

=> BH //IC

=> (dpcm)

26 tháng 3 2022

undefined

15 tháng 5 2022

https://hoidapvietjack.com/q/804157/cho-tam-giac-abc-vuong-tai-a-tia-phan-giac-cuaabc-cat-ac-tai-d-tu-d-ke-dh-vuong-

 

24 tháng 4 2018

a) Xét tam giác ABD và tam giác BDH có: góc B1= góc B2 (do BĐ là pg ABD)

      BD cạnh chung

      góc ABD= góc BHD( =90 độ)

=> tam giác ABD= tam giác BDH( g.c.g)

=> AD=DH( 2 cạnh tương ứng)

b) mk ki bt làm

c) Xét tam giác BHK vuông tại H có: góc B+ góc HKB= 90 độ( t/c)

  Xét tam giác BAC có : góc B+ góc ACB= 90 độ( t/c)

=> góc HKB= góc ACB (cùng phụ vs góc B)

=> góc AKD = góc HCD

Xét tam giác ADK và tam giác HDC có: 

góc AKD = góc HCD(cmt)

AD=DH( c/m câu a)

góc KAD= góc DHC( = 90 độ)

=> tam giác ADK= tam giác HDC( g.c.g)

=> AK=HC( 2 cạnh tương ứng)

Mà BA= BH( tam giác ABD= tam giác BDH)

      BA+ AK= BK , BH+HC= BC

       => BK=BC

=> tam giác KBC cân tại B( đpcm)

24 tháng 4 2018

a) Xét tam giacd ABD và tam giác HBD có :

góc ABD = góc HBD ( vì BD là tia phân giác )

BD : cạnh chung 

Góc BAD = góc BHD = 90 độ

=> tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )

=> AD = DH ( cặp cạnh tương ứng )

b) Xét tam giác HDC có :

góc DHC = 90 độ ( vì kề bù với góc BHD = 90 độ )

=> DC > DH ( vì DC là cạnh đối diện với góc vuông )

mà AD = DH ( câu a)

=> AD < DC ( đpcm )

c) Vì  AB = BH ( vì tam giác ABD = tam giác HBD )

=> tam giác ABH cân

Xét tam giác ADK và tam giác HDC có 

AD = DH ( vì tam fiacs ABD = tam giác HBD )

góc KAD = góc CHD = 90

Góc ADK = góc HDC ( đối đỉnh )

=> tam giác ADK = tam giác HDC ( g-c-g )

=> AK = HC ( cặp cạnh tương ứng )

mà AB + AK = BK 

BH + CH = BD 

Mà AB = BH (cmt )

=> BK = BC 

=> tam giác KBC cân (đpcm )

Ta có hình vẽ sau: ( tự vẽ hình nha bạn)

a) Xét \(\Delta ABD\)và \(\Delta HBD\):

BD: cạnh chung

\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)

\(\widehat{BAD}=\widehat{BHD}=90^o\)

=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)

=> AD=HD( 2 cạnh tương ứng)

=> đpcm

b)Xét \(\Delta DHC\)vuông tại H có:

DC>HC 

Mà HD=AD ( cm câu a)

=> DC> AD

c) ( Câu này sai đề nè bạn, phải là tam giác BKC cân nha)

Xét \(\Delta ADK\)và \(\Delta HDC:\)

AD=HD( cm câu a)

\(\widehat{ADK}=\widehat{HDC}\left(đđ\right)\)

\(\widehat{DHK}=\widehat{DHC}=90^o\)

=> \(\Delta ADK=\Delta HDC\left(ch-gn\right)\)

=> AK=HC ( 2 cạnh t/ứ)

Mà AB=BH( \(\Delta ABD=\Delta HBD\))

=> AB+AK=HC+BH

=> BK=BC

=> \(\Delta BKC\)cân tại B

=> đpcm

2 tháng 5 2020

A B C D H K

a) Xét tam giác ABD và tam giác HBD có :

BD chung

^ABD = ^HBD ( BD là phân giác của ^B )

=> Tam giác ABD = tam giác HBD ( ch - gn )

=> AD = HD ( hai cạnh tương ứng )

=> AB = AH ( _________________ )

b) Ta có : ^BAD + ^DAK = 1800 ( kề bù )

                ^BHD + ^DHC = 1800 ( kề bù )

Mà ^BAD = ^BHD = 900

=> ^DAK = ^DHC = 900

Xét tam giác DAK và tam giác DHC có :

^DAK = ^DHC ( cmt )

DA = DH ( cmt )

^ADK = ^HDC ( đối đỉnh )

=> Tam giác DAK = tam giác DHC ( g.c.g )

=> AD = DC ( hai cạnh tương ứng )

=> AK = HC ( _________________ )

c) ( Phải là KBC cân nhé . ABC sao được . Với lại bạn nối KC cho mình . Vẽ hơi vội )

Ta có : BK = BA + AK

            BC = BH + HC

Mà BA = BH , AK = HC ( cmt )

=> BK = BC

Xét tam giác KBC có BK = BC ( cmt )

=> Tam giác KBC cân tại B ( đpcm )

a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có

AD chung

góc BAD=góc HAD

=>ΔABD=ΔAHD

b; AB=AH

DB=DH

=>AD là trung trực của BH

c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có

DB=DH

góc BDI=góc HDC

=>ΔBDI=ΔHDC

=>DI=DC

=>ΔDIC cân tại D

d: Xét ΔAIC có AB/BI=AH/HC

nên BH//IC

e: AD vuông góc BH

BH//IC

=>AD vuông góc IC