K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDCF có

A là trung điểm của DC

AB//DF

Do đó: B là trung điểm của FC

Xét ΔAGE có

C là trung điểm của AE

CB//GE

Do đó: B là trung điểm của AG

Xét tứ giác AFGC có

B là trung điểm chung của AG và FC

nên AFGC là hình bình hành

mà AF=AC

nên AFGC là hình thoi

b: Để DG=EF thì GE=DF

=>2BC=2AB

=>AB=BC

31 tháng 12 2017

a)  IM // AC, AB \(\perp AC\)

\(\Rightarrow\)IM \(\perp AB\)  \(\Rightarrow\)\(\widehat{AMI}=90^0\)

IN // AB,  AB \(\perp AC\)

\(\Rightarrow\)IN \(\perp AC\)    \(\Rightarrow\)\(\widehat{ANI}=90^0\)

Tứ giác  AMIN  có:  \(\widehat{AMI}=\widehat{MAN}=\widehat{ANI}=90^0\)

nên  AMIN  là hình chữ nhật

b)  Hình chữ nhật  AMIN là hình vuông 

\(\Leftrightarrow\)AI  là phân giác  \(\widehat{BAC}\)

mà  AI  đồng thời la trung tuyến của  \(\Delta ABC\)

\(\Rightarrow\)\(\Delta ABC\)vuông cân tại  A

31 tháng 12 2017

bạn ơi. giải dc câu c ko ạ

a: Xét tứ giác ABMC có

E là trung điểm chung của AM và BC

góc BAC=90 độ

Do đó: ABMC là hình chữ nhật

b: Xét ΔBAC có BD/BA=BE/BC

nên DE//AC

=>EN//AC

Xét tứ giác ANEC có

AN//EC

AC//NE

=>ANEC là hình bình hành

a: Xét tứ giác AKMN có 

MN//AK

AN//MK

Do đó: AKMN là hình bình hành

mà \(\widehat{NAK}=90^0\)

nên AKMN là hình chữ nhật

b: Xét ΔAMQ có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAMQ cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc MAQ(1)

Xét ΔAME có 

AK là đường cao

AK là đường trung tuyến

DO đó: ΔAME cân tại A

mà AK là đường cao

nên AK là tia phân giác của góc MAE(2)

Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)

hay Q,E,A thẳng hàng

28 tháng 9 2020

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC

Tứ giác MNCB có MN // BC nên là hình thang

b) Xét ∆EQN và ∆KQC có:

     ^ENQ = ^KCQ (BN//CK, so le trong)

     QN = QC (gt)

     ^EQN = ^KQC (đối đỉnh)

Do đó ∆EQN = ∆KQC (g.c.g)

=> EN = KC ( hai cạnh tương ứng)                  (1)

∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE              (2)

Từ (1) và (2) suy ra KC = BE

Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)

c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)

d) Gọi J là trung điểm của BC 

Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ

Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF

Mà dễ thấy EF // BC nên IJ⊥BC

∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)

28 tháng 9 2020

a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.

=> MN //BC

Tứ giác MNCB có MNBC nên MNCB là hình thang.

b) Xét tứ giác EKCB có EK//BC, BE//CK

=> EKCB là hình bình hành

=> EK = BC (đpcm)