K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
10 tháng 12 2017

a/ xét tam giác ABM và tam giác ACM

có : AB = AC (gt)

      góc BAM = góc CAM (vì AM là tia phân giác của góc BAC)

      AM chung 

      do đó tam giac AMB = AMC (c-g-c)

a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)

nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)

Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(Định lí đảo của tam giác cân)

b) Xét ΔABM vuông tại B và ΔACM vuông tại C có 

AB=AC(ΔABC cân tại A)

BM=CM(ΔMBC cân tại M)

Do đó: ΔABM=ΔACM(hai cạnh góc vuông)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MB,MC

nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(ΔMBC cân tại M)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (4) và (5) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

góc ABD+góc ADB=90 độ

góc EBD+góc EDB=90 độ

mà góc ABD=góc EBD

nên góc ADB=góc EDB

=>góc HDB=góc HBD

=>ΔHBD cân tại H

11 tháng 8 2017

Viết thiếu rồi bạn ơi mk ko hiểu

15 tháng 8 2017

mk viết đúng đề oy mà