\(CE\perp BC\)giao AD tại E. CM:...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

Bn kẻ DH vuông góc với AC để CM CD>BD

Sau đó CM EC=AB

Suy ra đc P_ECD>P_ABD

3 tháng 3 2018

Nhầm CM: CE>AB

16 tháng 5 2017

A B C D H

a, Áp dụng định l;ý Py-ta-go vào \(\Delta ABC\) vuông tại A ,có :

BC2 =AB2 + AC2

BC2 = 62 + 82

BC2 = 100

=> BC = 10 (cm)

Chu vi \(\Delta ABC\) là : AB + AC + BC = 6 + 8+ 10 = 24 (cm )

b) Xét \(\Delta BAD\)\(\Delta HAD\) ,có :

\(\widehat{ABD}=\widehat{HBD}\) ( BD là tia p/h của góc B )

BD : cạnh chung

\(\widehat{BAD}=\widehat{BHD}=90^0\)

=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)

c) Xét \(\Delta DHC\) vuông tại H :

DC là cạnh huyền => DC > DH

Mà DH = DA => DA < DC

16 tháng 5 2017

A B C H D

a, áp dụng định lí py ta go vào \(\Delta ABC\) vuông tại A

BC2 = AB2 + AC2

BC2 = 62 + 82

=> BC = 10 cm

chu vi \(\Delta ABC\) là 6 + 8 + 10 = 24 cm

b, xét \(\Delta ABDvà\Delta HDB\)

BD chung

\(\widehat{ABD}=\widehat{HBD}\) ( BD là tia pg )

\(\widehat{A}=\widehat{H}=90^0\)

=> \(\Delta ABD=\Delta HBD\) ( ch - gn )

c, \(\Delta DHC\) vuông tại H

=> DC > DH

lại có DA = DH ( câu a )

=> DC > DA

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cma)Tính AHb)CM: Tam giác ABH=tam giác ACHc)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE când)CM:AH là trung trực của DEBài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại Ha)Tam giác ADB=tam giác ACEb)Tam giác AHC cânc)ED song song BCd)AH cắt BC tại K, trên HK lất M...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm

a)Tính AH

b)CM: Tam giác ABH=tam giác ACH

c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân

d)CM:AH là trung trực của DE

Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H

a)Tam giác ADB=tam giác ACE

b)Tam giác AHC cân

c)ED song song BC

d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông

Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:

a)tam giác ABD=tam giác EBD

b)Tam giác ABE là tam giác cân

c)DF=DC

Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm

a) Tính BC

b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC

c)CM: DE đi qua trung điểm cạnh BC

0
25 tháng 2 2017

Có: AB // CE ( cùng vuông góc với BC)

=> BAD = CED (so le trong)

= DAC

=> t/g ACE cân tại C => AC = CE

T/g ABC vuông tại B => AC > AB (trong t/g vuông cạnh huyền lớn nhất)

=> CE > AB (1)

ADC là góc ngoài của t/g ABD => ADC > ABD = 90o

T/g ADC có ADC tù => AC > AD

hay CD > AD

Mà DE > CD do t/g DCE vuông tại C (gt)

=> DE > AD (2)

Từ D kẻ DH _|_ AC

T/g ABD = t/g AHD ( cạnh huyền - góc nhọn)

=> BD = DH (2 cạnh t/ư)

T/g DHC vuông tại H => DC > DH (...)

hay DC > BD (3)

Từ (1);(2);(3) => Chu vi t/g ECD > chi vi t/g ABD (ĐPCM)

28 tháng 2 2022

T/g là j á bn

 

1. Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy D. Trên tia đối của BC lấy E sao cho BD=BE. các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CM: a, DM=ED b, Đường thằng BC cắt Mn tại I là trung điểm của MN 2. Cho tam giác ABC có góc B và góc c nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE (trong đó góc ABD và...
Đọc tiếp

1. Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy D. Trên tia đối của BC lấy E sao cho BD=BE. các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CM:

a, DM=ED

b, Đường thằng BC cắt Mn tại I là trung điểm của MN

2. Cho tam giác ABC có góc B và góc c nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE (trong đó góc ABD và góc ACE đều bằng 90 độ), vẽ DI và EK cùng vuông góc với đường thẳng BC. CM:

a, BI=CK; EK=HC

b, BC=DI+EK

3. Cho M, N lần lượt là trung điểm của các cạnh AB và AC của tam giác ABC. Các đường phân giác và phân giác ngoài của tam giác kẻ từ B cắt đường thẳng MN lần lượt tại D và E các tia AD và AE cắt đường thẳng BCtheo thứ tự tại P và Q. CM:

a, BD\(\perp\)AP và BE\(\perp\) AQ

b, B là trung điểm của BQ

c, AB=DE

0
16 tháng 8 2016

bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha

Bài 1:

a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)

=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)

b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD

c) xét tam giác AEF  và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)

=> tam giác AEF  = tam giác DEC ( trường hợp g.c.g ) => AE = DC     (1)

mặt khác, AB = BD ( c/m câu b)      (2)      => tam giác ABD cân tại B => góc BDA = góc B :2     (3)

từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2     (4)

từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC

Bài 2:

a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD =  tam giác HBD => AD = DH ( cặp cạnh tương ứng)

b) do AD = DH ( c/m câu a)           (1)

xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên)    (2)

từ (1) và (2) => AD < DC

c) xét tam giác ADK  và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)

=> tam giác ADK  = tam giác HDC ( trường hợp g.c.g ) => AK = HC     (3)

mặt khác, AB = BH ( do tam giác ABD =  tam giác HBD)      (4)      

từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B 

Xong rồi nha :)

16 tháng 9 2016

chịu 

thông cảm nhé