Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D H
a, Áp dụng định l;ý Py-ta-go vào \(\Delta ABC\) vuông tại A ,có :
BC2 =AB2 + AC2
BC2 = 62 + 82
BC2 = 100
=> BC = 10 (cm)
Chu vi \(\Delta ABC\) là : AB + AC + BC = 6 + 8+ 10 = 24 (cm )
b) Xét \(\Delta BAD\) và \(\Delta HAD\) ,có :
\(\widehat{ABD}=\widehat{HBD}\) ( BD là tia p/h của góc B )
BD : cạnh chung
\(\widehat{BAD}=\widehat{BHD}=90^0\)
=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
c) Xét \(\Delta DHC\) vuông tại H :
DC là cạnh huyền => DC > DH
Mà DH = DA => DA < DC
A B C H D
a, áp dụng định lí py ta go vào \(\Delta ABC\) vuông tại A
BC2 = AB2 + AC2
BC2 = 62 + 82
=> BC = 10 cm
chu vi \(\Delta ABC\) là 6 + 8 + 10 = 24 cm
b, xét \(\Delta ABDvà\Delta HDB\) có
BD chung
\(\widehat{ABD}=\widehat{HBD}\) ( BD là tia pg )
\(\widehat{A}=\widehat{H}=90^0\)
=> \(\Delta ABD=\Delta HBD\) ( ch - gn )
c, \(\Delta DHC\) vuông tại H
=> DC > DH
lại có DA = DH ( câu a )
=> DC > DA

Có: AB // CE ( cùng vuông góc với BC)
=> BAD = CED (so le trong)
= DAC
=> t/g ACE cân tại C => AC = CE
T/g ABC vuông tại B => AC > AB (trong t/g vuông cạnh huyền lớn nhất)
=> CE > AB (1)
ADC là góc ngoài của t/g ABD => ADC > ABD = 90o
T/g ADC có ADC tù => AC > AD
hay CD > AD
Mà DE > CD do t/g DCE vuông tại C (gt)
=> DE > AD (2)
Từ D kẻ DH _|_ AC
T/g ABD = t/g AHD ( cạnh huyền - góc nhọn)
=> BD = DH (2 cạnh t/ư)
T/g DHC vuông tại H => DC > DH (...)
hay DC > BD (3)
Từ (1);(2);(3) => Chu vi t/g ECD > chi vi t/g ABD (ĐPCM)

bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha
Bài 1:
a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)
=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)
b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD
c) xét tam giác AEF và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)
=> tam giác AEF = tam giác DEC ( trường hợp g.c.g ) => AE = DC (1)
mặt khác, AB = BD ( c/m câu b) (2) => tam giác ABD cân tại B => góc BDA = góc B :2 (3)
từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2 (4)
từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC
Bài 2:
a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD = tam giác HBD => AD = DH ( cặp cạnh tương ứng)
b) do AD = DH ( c/m câu a) (1)
xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên) (2)
từ (1) và (2) => AD < DC
c) xét tam giác ADK và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)
=> tam giác ADK = tam giác HDC ( trường hợp g.c.g ) => AK = HC (3)
mặt khác, AB = BH ( do tam giác ABD = tam giác HBD) (4)
từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B
Xong rồi nha :)
Bn kẻ DH vuông góc với AC để CM CD>BD
Sau đó CM EC=AB
Suy ra đc P_ECD>P_ABD
Nhầm CM: CE>AB