K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2023

xét ΔABM và ΔANM, ta có : 

AB = AN (gt)

\(\widehat{MAB}=\widehat{MAN}\) (vì AM là tia phân giác của \(\widehat{A}\))

AM là cạnh chung

→ ΔABM = ΔANM (c.g.c)

a: Xét ΔABM và ΔANM co

AB=AN

góc BAM=góc NAM

AM chung

=>ΔABM=ΔANM

b: ΔABM=ΔANM

=>góc ABM=góc ANM=90 độ

=>góc NMC=90 độ-góc C=góc BAC

a: Xét ΔABM và ΔANM có

AB=AN

góc BAM=góc NAM

AM chung

=>ΔABM=ΔANM

b: góc BAC+góc C=90 độ

góc CMN+góc C=90 độ

=>góc BAC=góc CMN

a: Xét ΔABM và ΔANM có

AB=AN

\(\widehat{BAM}=\widehat{NAM}\)

AM chung

Do đó: ΔABM=ΔANM

b: Xét ΔBMI và ΔNMC có 

\(\widehat{BMI}=\widehat{NMC}\)

MB=MN

\(\widehat{MBI}=\widehat{MNC}\)

Do đó; ΔBMI=ΔNMC

Suy ra: BI=NC

Ta có: AB+BI=AI

AN+NC=AC

mà AB=AN

và BI=NC

nên AI=AC

hay ΔAIC cân tại A

c: Xét ΔABC có AM là phân giác

nên BM/AB=CM/AC

mà AB<AC

nên BM<CM

23 tháng 12 2023

em lớp 6 ko bt làm

 

23 tháng 12 2023

em lớp 5 cũng ko biết làm

10 tháng 1 2024

loading... a) Do AD là tia phân giác của ∠BAC (gt)

⇒ ∠BAD = ∠CAD

Do ∆ABC cân tại A

⇒ AB = AC

Xét ∆ABD và ∆ACD có:

AB = AC (cmt)

∠BAD = ∠CAD (cmt)

AD là cạnh chung

⇒ ∆ABD = ∆ACD (c-g-c)

⇒ BD = CD

⇒ D là trung điểm của BC (1)

Do ∆ABD = ∆ACD (cmt)

⇒ ∠ADB = ∠ADC (hai góc tương ứng)

Mà ∠ADB + ∠ADC = 180⁰ (kề bù)

⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰

⇒ AD ⊥ BC (2)

Từ (1) và (2) ⇒ AD là đường trung trực của BC

b) Sửa đề: Chứng minh ∆ADM = ∆ADN

Do ∠BAD = ∠CAD (cmt)

⇒ ∠MAD = ∠NAD

Xét ∆ADM và ∆ADN có:

AD là cạnh chung

∠MAD = ∠NAD (cmt)

AM = AN (gt)

⇒ ∆ADM = ∆ADN (c-g-c)

⇒ ∠AMD = ∠AND = 90⁰ (hai góc tương ứng)

⇒ DN ⊥ AN

⇒ DN ⊥ AC

d) Do K là trung điểm của CN (gt)

⇒ CK = KN

Xét ∆DKC và ∆EKN có:

CK = KN (cmt)

∠DKC = ∠EKN (đối đỉnh)

KD = KE (gt)

⇒ ∆DKC = ∆EKN (c-g-c)

⇒ ∠KDC = ∠KEN (hai góc tương ứng)

Mà ∠KDC và ∠KEN là hai góc so le trong

⇒ EN // CD

⇒ EN // BC (3)

∆AMN có:

AM = AN (gt)

⇒ ∆AMN cân tại A

⇒ ∠AMN = (180⁰ - ∠MAN) : 2

= (180⁰ - ∠BAC) : 2 (4)

∆ABC cân tại A (gt)

⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (5)

Từ (4) và (5) ⇒ ∠AMN = ∠ABC

Mà ∠AMN và ∠ABC là hai góc đồng vị

⇒ MN // BC (6)

Từ (3) và (6) kết hợp với tiên đề Euclide ⇒ M, N, E thẳng hàng

6 tháng 1

Boy sigma boi 

a: Xét ΔAMB và ΔAMD có

AM chung

MB=MD

AB=AD

Do đó: ΔAMB=ΔAMD

b: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

c: Xét ΔKBE và ΔKDC có

KB=KD

\(\widehat{KBE}=\widehat{KDC}\)

BE=DC

Do đó: ΔKBE=ΔKDC

Suy ra: \(\widehat{BKE}=\widehat{DKC}\)

=>\(\widehat{BKE}+\widehat{BKD}=180^0\)

hay E,K,D thẳng hàng

15 tháng 3 2021

Thiếu dữ liệu nhé

15 tháng 3 2021

Bạn thiếu đề bài nhé!

27 tháng 12 2021
Giúp mình bài này đi mà :<