K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2023

loading...

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Lời giải:

$|\overrightarrow{BC}|=BC=\sqrt{AB^2+AC^2}=\sqrt{(3a)^2+(4a)^2}=5a$ theo định lý Pitago.

Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR: Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR: a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD b) Vecto AB + vecto CD = Vecto AD + vecto CB c)Vecto AB - vecto CD = Vecto AB - vecto BD Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH +...
Đọc tiếp

Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR:

Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE

Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR:

a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD

b) Vecto AB + vecto CD = Vecto AD + vecto CB

c)Vecto AB - vecto CD = Vecto AB - vecto BD

Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB + vecto IK + vecto IC = Vecto 0

Bài 4: Cho hình bình hành ABCD với O là tâm. CMR:

a) Vecto CO - vecto OB = Vecto BA

b) Vecto AB - vecto BC = Vecto DB

c) Vecto DA - vecto DB = Vecto OD - vecto OC

d) Vecto DA - vecto DB + vecto DC = Vecto 0

Bài 4: Cho tam giác ABC vuông cân tại A, trọng tâm G. cạnh AB=a. Gọi I là trung điểm BC. Tính độ dài vecto sau:

a) Vecto a= vecto AB + vecto AC

b) Vecto b= vecto AB + vecto AC + vecto AG

c) Vecto c= vecto BA + vecto BC

d) Vecto d= vecto AB - vecto AC + vecto BI

5
4 tháng 8 2019

Xíu nữa làm :v

4 tháng 8 2019

1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)

\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)

\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)

b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)

\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))