Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABNC có
M là trung điểm của BC
Mlà trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABNC là hình chữ nhật
Suy ra: BN=AC vàBN//AC
b: Ta có: ABNC là hình chữ nhật
nên \(\widehat{ABN}=90^0\)
c: Xét ΔABC và ΔBAN có
AB chung
BC=AN
AC=BN
Do đo: ΔABC=ΔBAN
d: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=1/2BC
Ta có hình vẽ sau:
A B C D M 1 2
GT: ΔABC ; \(\widehat{A}\) = 90o
MB = MC ; MA = MD
KL: a) ΔAMB = DMC
a) Xét ΔAMB và ΔDMC có:
MA = MD (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
B A N C M
a) Xét tam giác BMN và tam giác CMA , có :
MB = MC ( gt )
MN = MA ( gt )
góc BMN = góc CMA ( đối đỉnh )
=> tam giác BMN = tam giác CMA ( c-g-c )
=> BN = CA ( hai cạnh tương ứng )
=> góc BNM = góc CAM ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên AC // BN ( dấu hiệu nhận biết hai đường thẳng song song )
Vậy BN = CA ; AC // BN ( đpcm )
b) Vì AC // BN nên AB ; CN vuông góc với BN hay góc ABN = 90o
Vậy góc ABN = 90o
c) Xét tam giác ABC và tam giác BAN , có :
BA : chung
AC = BN ( tam giác BMN = tam giác CMA )
góc CAB = góc NBA ( = 90o )
=> tam giác ABC = tam giác BAN ( hai cạnh góc vuông )
Vậy tam giác ABC = tam giác BAN ( hai cạnh góc vuông )
d) Vì tam giác ABC = tam giác BAN ( chứng minh câu c ) => BC = AN ( hai cạnh tương ứng ) mà AM = 1/2 AN => AM = 1/2 BC
Vậy AM = 1/2 BC