K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

Mình ko hỉu

31 tháng 12 2021

a: Xét ΔBMD và ΔCMA có 

\(\widehat{BMD}=\widehat{CMA}\)

MB=MC

\(\widehat{MBD}=\widehat{MCA}\)

Do đó: ΔBMD=ΔCMA

1 tháng 1 2022

a: Xét ΔBAC có 

MN//AB

nên CMCB=MNABCMCB=MNAB

⇔MN=6⋅12=3(cm)⇔MN=6⋅12=3(cm)

b: Vì M đối xứng với E qua AC

nên AC là đường trung trực của ME

mà AC cắt ME tại N

nên N là trung điểm của ME

Xét tứ giác AMCE có 
N là trung điểm của đường chéo ME

N là trung điểm của đường chéo AC

Do đó: AMCE là hình bình hành

b: Xét tứ giác ABDC có

AB//DC

AB=DC
DO đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: AD=BC

9 tháng 1 2019

A B C M D I K

a) Do AD // BC (gt) => góc DAC = góc ACB (so le trong)

        AB // CD (gt) => góc BAC = góc ACD (so le trong)

Xét t/giác ABC và t/giác CDA

có góc ACB = góc DAC (cmt)

 AC : chung

 góc BAC = góc ACD (cmt)

=> t/giác ABC = t/giác CDA (g.c.g)

b) Ta có : t/giác ABC = t/giác CDA (cmt)

=> AB = CD (hai cạnh tương ứng)

Do AB // CD (gt) => góc ABD = góc BDC (so le trong)

Xét t/giác AMB và t/giác CMD

có góc BAM = góc  MCD (cmt)

  AB = CD (cmt)

  góc ABM = góc BDM (cmt)

=> t/giác AMB = t/giác CMD (g.c.g)

=> AM = MC (hai cạnh tương ứng)

=> M là trung điểm của AC

c) Xét t/giác AMI và t/giác CMK

có góc DAC = góc ACK (cmt)

    AM = CM (cmt)

   góc IMA = góc CMK (đối đỉnh)

=> t/giác AMI = t/giác CMK (g.c.g)

=> MI = MK (hai cạnh tương ứng)

=> M là trung điểm của IK

30 tháng 11 2019

Kuroba Kaito, mình đã biết I, M, K có thẳng hàng đâu. mới chứng minh được MI=Mk nên chưa thể nói M là trung điểm của IK được

26 tháng 1 2021

a. Nối DD và FF 

Xét ΔBDFΔBDF và ΔDEFΔDEF , ta có :

DF=DFDF=DF ( cạnh chung )

ˆBDF=ˆDEFBDF^=DEF^ ( vì AB//EFAB//EF )

ˆDFB=ˆFDEDFB^=FDE^ ( vì DE//BCDE//BC )

⇒ΔBDF=ΔFDE(g.c.g)⇒ΔBDF=ΔFDE(g.c.g)

⇒DB=EF⇒DB=EF ( hai cạnh tương ứng )

Mà AD=DB⇒AD=EFAD=DB⇒AD=EF

b. Xét ΔADEΔADE và ΔEFCΔEFC , ta có :

ˆA=ˆFECA^=FEC^ ( vì AB//EFAB//EF )

AD=EFAD=EF ( theo câu a )

ˆADE=ˆEFC(=ˆB)ADE^=EFC^(=B^)

⇒ΔADE=ΔEFC(g.c.g)

8 tháng 4 2020

a) Xét ΔCBM và ΔADM có:

AM=MC (giả thtết)

gócCMB=gócAMD ( đối đỉnh)

BM=MD (giả thiết)

⇒ ΔCBM=ΔADM (c.g.c)

BC=DA (hai cạnh tương ứng)

b) Xét ΔABM và ΔCDM có:

AM=CM (giả thiết)

gócAMB=gócCMD(đối đỉnh)

BM=DM (giả thiết)     

⇒ ΔABM=ΔCDM (c.g.c)

gócBAM=gócDCM=90độ (hai góc tương ứng) (đpcm)

⇒ DC⊥AC (đpcm)

c) Ta có BN//AC mà AC⊥DC

⇒ BN⊥DC ⇒gócBND=90độ

AB//CD (do cùng ⊥AC)

Xét ΔABC và ΔNBC có:

gócABC=gócNCB (hai góc ở vị trí so le trong)

BC chung

gócACB=gócNBC (do BN//AC nên đó là hai góc ở vị trí so le trong)

⇒ ΔABC=ΔNBC (g.c.g)

⇒ AB=NC (hai cạnh tương ứng)

Xét ΔABM và ΔCNM có:

AB=CN (cmt)

góc BAM=gócNCM=90độ

góc BAM= gócNCM=90độ

AM=CM (giả thiết)

⇒ ΔABM=ΔCNM (đpcm)

8 tháng 4 2020

cảm ơn bạn mai thị hạnh duyên

17 tháng 12 2019

A F E D B M C

a) Xét \(\Delta\)DMB và \(\Delta\)DMC có:

DM chung 

^DMB = ^DMC ( = 1v )

BM = MC ( M là trung điểm BC ) 

=> \(\Delta\)DMB = \(\Delta\)DMC ( c. g. c)

b) Từ (a) => ^DCM = ^DBM  => ^ACB = ^EBC ( 1)

=> ^EAD = ^ACB = ^EBC = ^AED ( so le trong; AE// BC )

=> \(\Delta\)ADE cân tại D 

=> DA = DE mà từ (a) => DB = DC 

=> BE = AC ( 2)

Từ (1); (2)  và cạnh BC chung 

=> \(\Delta\)BEC = \(\Delta\)CAB.( c. g.c)

Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả

19 tháng 3 2020

mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng 

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau