Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H E C D I
Từ D hạ DI vuông góc với AH sao cho I thuộc AH => Góc AID = 90 độ
Xét tam giác vuông ABH và tam giác vuông DIA có: AB=AD (gt),
\(\widehat{A_1}+\widehat{A_2}=90^o\) mà \(\widehat{A_2}+\widehat{D_1}=90^o\) => \(\widehat{A_1}=\widehat{D_1}\) , \(\widehat{AID}=\widehat{AHB}=90^o\)
=> Tam giác AHB= tam giác DIA (ch-gn) => AH=DI (1)
Xét tứ giác IHDE có : \(\widehat{HID}=\widehat{IHE}=\widehat{HED}=90^o\) => Tứ giác IHED là hình chữ nhật => HE=DI (2)
Từ (1) và (2) => HA=HE => đpcm
A B C K
Vì ΔAKB = ΔAKC (giả thiết)
Suy ra: góc AKB = góc AKC (hai góc tương ứng)
Mà: góc AKB + góc AKC = 180o
\(\Rightarrow\) Góc AKB = góc AKC = 90o
Do đó: AK \(\perp\) BC.
a)xét 2 tam giác vuông\(\Delta ABE=\Delta HBE\)
có góc ABE = góc EBH ( vì BE là phân giác góc B )
BE chung
=> \(\Delta ABE=\Delta HBE\) ( cạnh huyền - góc nhọn )
Bạn tự vẽ hình nha
a.
Xét tam giác ABE vuông tại A và tam giác HBE vuông tại H có:
BE là cạnh chung
ABE = HBE (BE là tia phân giác của ABH)
=> Tam giác ABE = Tam giác HBE (cạnh huyền - góc nhọn)
b.
AB = BH (Tam giác ABE = Tam giác HBE)
=> B thuộc đường trung trực của AH (1)
AE = EH (Tam giác ABE = Tam giác HBE)
=> E thuộc đường trung trực của AH (2)
Từ (1) và (2)
=> BE là đường trung trực của AH
Chúc bạn học tốt
2.
a) +) ta co: tam giác GLO
GL = 6, LO = 8, OG = 10
=> GL < LO < GO ( 6<8<10)
=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )
+) ta co: tam giac UVW
góc V = 40, góc U = 50
=> góc W = 180 - ( góc V + goc Ư )
= 180 - ( 50 + 40)
= 90
=> góc V < góc U < góc W
=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )
lê tiến trường
\(\left|x-564\right|=532\)
\(\Rightarrow\left[{}\begin{matrix}x-564=532\\x-564=-532\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=532+564=1096\\x=\left(-532\right)+564=32\end{matrix}\right.\)
Vậy x = 1096 và x = 32
TH1: x-564=532
x= 532+564
x= 1098
TH2: x-564=-532
x= -532+564
x= 34
X thuộc( phải bằng dau) \(\left\{34,1098\right\}\)
+\(\Delta\)ABD vuông tại A => \(\widehat{ABD}\)+\(\widehat{ADB}\)=90
Mà \(\widehat{ADB}\) = \(\widehat{CDE}\) đối đỉnh
=>\(\widehat{ABD}\)+\(\widehat{CDE}\) = 90 (1)
+\(\Delta\)CBE vuông tại C =>\(\widehat{CBE}\)+\(\widehat{CEB}\)=90
Mà \(\widehat{CBE}\) = \(\widehat{ABD}\) ( BD là phân giác)
=> \(\widehat{CEB}\)+\(\widehat{ABD}\) = 90 (2)
(1)(2) => \(\widehat{CEB}\) =\(\widehat{CDE}\) hay \(\widehat{CED}\)=\(\widehat{CDE}\) ( dpcm)
Ta có :
\(\begin{cases}\widehat{BAC}+\widehat{DAC}=180^0\\\widehat{DAC}+\widehat{ACD}+\widehat{ADC}=180^0\end{cases}\)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}+\widehat{ADC}\)
\(\Rightarrow100^0=\widehat{ACD}+\widehat{ADC}\)
Xét tứ giác AEHD có:
^A = 90o (tam giác ABC vuông tại A)
^AEH = 90o ( HE vuông góc AC)^ADH = 90o ( HD vuông góc AB)
=> AEHD là hình chữ nhật (dhnb)
=> DE = AH (TC hình chữ nhật)
Mà DE cắt AH tại K (gt)
=> K là trung điểm DE và AH (TC hình chữ nhật)
=> KD = KE và KA = KH
thank bạn