Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)
\(\widehat{KCB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)
nên \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
=>KB=KC
Ta có: KB+BM=KM
KC+CN=KN
mà KB=KC
và BM=CN
nên KM=KN
=>ΔKNM cân tại K
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
a) ta có AB=AC
=> TAM GIÁC ABC CÂN TẠI A
=> B=C
XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ
AB = AC(GT)
B = C (CMT)
BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)
=> TAM GIÁC ABM = TAM GIÁC ACM (C-G-C)
B) XÉT \(\Delta AMC\)VÀ \(\Delta EMB\)CÓ
\(BM=MC\left(GT\right)\)
\(\widehat{AMC}=\widehat{EMB}\)(ĐỐI ĐỈNH)
\(MA=ME\left(GT\right)\)
\(\Rightarrow\Delta AMC=\Delta EMB\left(C-G-C\right)\)
\(\Rightarrow\widehat{BEA}=\widehat{CAE}\)HAI GÓC TƯƠNG ỨNG
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
\(\Rightarrow AC//BE\)