K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

Hình bạn tự vẽ nhé!!thanghoa

a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

         BD là cạnh chung

         Góc ABD = góc EBD (đường phân giác BD)

=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)

b). Gọi I là giao điểm của BD và AE.

Xét tam giác ABI và tam giác EBI có:

          AB=EB (tam giác ABD=tam giác EBD)

          Góc ABI=góc EBI (đường phân giác BD)

          BI là cạnh chung.

=> tam giác ABI=tam giác EBI (c.g.c)

=> AI=EI => I là trung điểm của AE. (1)

=> Góc BIA=góc BIE

Mà góc BIA+góc BIE=180 độ (hai góc kề bù)

=> góc BIA=góc BIE=90 độ.

=> BI vuông góc với AE (2).

Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AE

d). Xét tam giác ADF vuông tại A và tam giác EDC vuông tại E có:

                AD=ED (tam giác ABD = tam giác EBD)

                AF=CE (GT)

=> tam giác ADF=tam giác EDC (hai cạnh góc vuông)

=> Góc ADF = góc EDC 

Chúc bạn học tốt!

 

19 tháng 4 2017

cn ý : E,D,F thẳng hàng

giúp mk vs

A B C D E F

6 tháng 5 2016

Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)

Ta có 

Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)

      dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)

Vậy , suy ra AE/AD = 1/3

Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)

DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB

DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)

=> AE/AD = 1/3

5 tháng 5 2015

a. Xét tam giác ABD vuông tại A và tam giác BED vuông tại E có:
BD : Cạnh chung 
Góc ABD = góc DBE (BD phân giác)
=> Tam giác ABD = tam giác BED (cạnh huyền - góc nhọn) 
b. Ta có BA = BE (Tam giác = tam giác câu a) 
=> tam giác BAE cân tại B. 
Lại có BD là phân giác tam giác BAE => BD vừa là phân giác vừa là đường trung trực của đoạn AE.
c. Xét tam giác EDC vuông tại E:
DE < DC (Cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DE = DA (Tam giác = tam giác câu a)
=> DA < DC. 
d. Xét tam giác ADF và tam giác EDC: 
DA = DE (tam giác = tam giác câu a)
DAF = DEC (=90 độ)
AF = EC (gt) 
=> Tam giác ADF = tam giác EDC (C.g.c)
=> ADF = EDC (góc tương ứng) 
Mặt khác : EDC + EDA = 180 độ .
Từ đó suy ra : EDA + ADF = 180 độ. 
Vậy E,D,F thẳng hàng.

27 tháng 4 2016

bài của mk k có câu b, nếu câu c đúg hết thiếu 2 góc tg ứng D1=D2 trừ mấy điểm nhỉ

3 tháng 5 2016

C2 

Xét tam giác ADF và tam giác EDC có : 

DA = DE ( Cmt ) 

DEF = DEC 

AF = EC ( Cmt ) 

=) ........ ( c.g.c ) 

=) ADF = EDC ( ...)

mà :  EDC + EDA = 180 ĐỘ

=)  EDA + ADF = 180 độ 

=) E D F thẳng hàng 

k cko mk ddi

2 tháng 5 2016

xem lại đề : sao BD _|_ BC đc?

1 tháng 5 2016

a. Xét tam giác ABD vuông tại A và tam giác BED vuông tại E có:
BD : Cạnh chung 
Góc ABD = góc DBE (BD phân giác)
=> Tam giác ABD = tam giác BED (cạnh huyền - góc nhọn) 
b. Ta có BA = BE (Tam giác = tam giác câu a) 
=> tam giác BAE cân tại B. 
Lại có BD là phân giác tam giác BAE => BD vừa là phân giác vừa là đường trung trực của đoạn AE.
c. Xét tam giác EDC vuông tại E:
DE < DC (Cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DE = DA (Tam giác = tam giác câu a)
=> DA < DC. 
d. Xét tam giác ADF và tam giác EDC: 
DA = DE (tam giác = tam giác câu a)
DAF = DEC (=90 độ)
AF = EC (gt) 
=> Tam giác ADF = tam giác EDC (C.g.c)
=> ADF = EDC (góc tương ứng) 
Mặt khác : EDC + EDA = 180 độ .
Từ đó suy ra : EDA + ADF = 180 độ. 
Vậy E,D,F thẳng hàng.

 mk nhanh nhất  nha 

Cho tam giác ABC vuoog tại A, đường phân giác BD. Kẻ DE vuong góc với BC ( E thuộc BC) Trên tia đối của tia AB  lấy F sao cho AF = CE. Chứng minh :

  • Tam giác ABD = EBD
  • BD là đường trug trực của đoạn thẳng AE
  • AD ,  DC
  • Goác ADF = goác EDC và E, F, D thẳng hàng
3 tháng 5 2016

2 hoặc 3

7 tháng 8 2020

A C D E B F

Bài làm:

d) Từ các phần a,b,c có lẽ bn đã CM được:

\(\hept{\begin{cases}DE=AD\\FA=CE\end{cases}}\)

Xét trong tam giác DEC có: \(DE+EC>DC\) (bất đẳng thức trong tam giác)

Ta có: \(2\left(AD+AF\right)=AD+AD+AF+AF\)

\(=AD+AF+\left(AD+AF\right)\)

\(=AD+AF+\left(DE+EC\right)\)

\(>AD+AF+DC=AF+\left(AD+DC\right)\)

\(=AF+AC>FC\) (bất đẳng thức giữa 3 cạnh trong tam giác AFC)

=> \(2\left(AD+AF\right)>CF\)