Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: tam giác ABC vuông tại A
=> góc BAc=90độ hay góc BAD=90độ
Ta có: DE vuông góc với BC
=> góc BED =90độ
Xét tam giác BAD vuông tại A có:
góc ABD+ góc BDA =90độ (tổng 2 góc nhọn trong tam giác vuông)
=> Góc BDA=90độ -góc ABD
Xét tam giác BED vuông tại E có:
Góc DBE+góc BDE=90độ (tổng 2 góc nhọn trong tam giác vuông)
=> Góc BDE=90độ -góc DBE
Mà góc ABD=góc DBE (vì BD là tia p/g của góc ABC)
=> Góc BDA=góc BDE
Xét tam giác BDA và tam giác BDE ta có:
+>Góc ABD=góc EBD (vì BD là tia p/g của góc ABC)
+>Chung cạnh BD
+> Góc BDA=góc BDE (cmt)
=> tam giác BDA=tam giác BDE (g-c-g)
=>BA=BE (2 cạnh tương ứng)
=> ĐPCM

A B C D H E K
aXét 2 tam giác BHA và tam giác BHE có:
H1=H2=90
B1=B2(phân giác góc B)
BH chung
=> tam giác BHA = tam giác BHE(g.c.g)
b Chứng minh AK // DE mà
MÀ AK vuông góc vs BC
=> ED vuông góc vs BC

a, Xét △BHA vuông tại H và △BHE vuông tại H
Có: BH là cạnh chung
ABH = EBH (gt)
=> △BHA = △BHE (cgv-gn)
b, Vì △BHA = △BHE (cmt) => BA = BE (2 cạnh tương ứng)
Xét △BAD và △BED
Có: AB = BE (cmt)
ABD = EBD (gt)
BD là cạnh chung
=> △BAD = △BED (c.g.c)
=> BAD = BED (2 góc tương ứng)
Mà BAD = 90o
=> BED = 90o
=> DE ⊥ BE
=> DE ⊥ BC
c, Vì △BAD = △BED (cmt) => AD = ED (2 cạnh tương ứng)
Xét △EDC vuông tại E có: DE < DC (cạnh góc vuông nhỏ hơn cạnh huyền)
=> AD < DC
d, Ta có: AD = ED (cmt) => △ADE vuông tại D => DAE = DEA
Vì AK ⊥ BC (gt) và DE ⊥ BC (cmt)
=> AK // DE (từ vuông góc đến song song)
=> KAE = AED (2 góc so le trong)
mà DAE = DEA (cmt)
=> KAE = DAE => KAE = CAE
Mà AE nằm giữa AK, AC
=> AE là phân giác CAK