K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: H và I đối xứng nhau qua AB

nên AB là đường trung trực của HI

Suy ra: AH=AI và BH=BI

Xét ΔAHI có AH=AI

nên ΔAHI cân tại A

mà AB là đường trung trực ứng với cạnh đáy HI

nên AB là tia phân giác của \(\widehat{HAI}\)

Ta có: H và K đối xứng nhau qua AC

nên AC là đường trung trực của HK

Suy ra: AH=AK và CH=CK

Xét ΔAKH có AK=AH

nên ΔAKH cân tại A

mà AC là đường trung trực ứng với cạnh đáy HK

nên AC là tia phân giác của \(\widehat{KAH}\)

Ta có: \(\widehat{KAH}+\widehat{IAH}=\widehat{KAI}\)

\(\Leftrightarrow\widehat{KAI}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)

\(\Leftrightarrow\widehat{KAI}=2\cdot90^0=180^0\)

Do đó: K,A,I thẳng hàng

16 tháng 9 2021

a: Ta có: H và I đối xứng nhau qua AB

nên AB là đường trung trực của HI

Suy ra: AH=AI và BH=BI

Xét ΔAHI có AH=AI

nên ΔAHI cân tại A

mà AB là đường trung trực ứng với cạnh đáy HI

nên AB là tia phân giác của ˆHAIHAI^

Ta có: H và K đối xứng nhau qua AC

nên AC là đường trung trực của HK

Suy ra: AH=AK và CH=CK

Xét ΔAKH có AK=AH

nên ΔAKH cân tại A

mà AC là đường trung trực ứng với cạnh đáy HK

nên AC là tia phân giác của ˆKAHKAH^

Ta có: ˆKAH+ˆIAH=ˆKAIKAH^+IAH^=KAI^

⇔ˆKAI=2⋅(ˆBAH+ˆCAH)⇔KAI^=2⋅(BAH^+CAH^)

⇔ˆKAI=2⋅900=1800⇔KAI^=2⋅900=1800

Do đó: K,A,I thẳng hàng

8 tháng 11 2016

hiha

15032096_229847127435111_1802351861761025051_n.jpg?oh=2341d4195dfe6241e04388065b174e6b&oe=58960660

14955817_229847134101777_6360046847247255931_n.jpg?oh=8fbcbae78b23c769fa37d18be5e83863&oe=58C57576

15036645_229847130768444_8969830646332652852_n.jpg?oh=bae9965a9ba6450cf3dcc6bacb7b242c&oe=5890BF5D

8 tháng 11 2016

Cảm ơn bn nhiều lắm

3 tháng 12 2019

hình như đề bài sai

a: Ta có: H và I đối xứng nhau qua AB

nên AB là đường trung trực của HI

=>AH=AI

=>ΔAHI cân tại A

mà AB là đường cao

nên AB là phân giáccủa góc HAI(1)

Ta có: H và K đối xứng nhau qua AC
nên AC là đường trung trực của HK

=>AH=AK

=>ΔAHK cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAK(2)

Từ (1) và (2) suy ra \(\widehat{KAI}=2\cdot\widehat{BAC}=180^0\)

hay K,A,I thẳng hàng

b: Xét ΔAHB và ΔAIB có

AH=AI

\(\widehat{HAB}=\widehat{IAB}\)

AB chung

Do đó: ΔAHB=ΔAIB

Suy ra: \(\widehat{AHB}=\widehat{AIB}=90^0\)

hay BI\(\perp\)KI(3)

Xét ΔAHC và ΔAKC có

AH=AK

\(\widehat{HAC}=\widehat{KAC}\)

AC chung

Do đó: ΔAHC=ΔAKC

Suy ra: \(\widehat{AHC}=\widehat{AKC}=90^0\)

hay CK\(\perp\)KI(4)

Từ (3) và (4) suy ra BI//CK

hay BIKC là hình thang

c: IK=KA+AI

nên IK=2AH