Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔAHB\(\sim\)ΔCAB(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)
Vậy: AH=4,8cm; HB=3,6cm
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
A B C H
Giải: a) Ta có : \(S_{\Delta ABC}\)= \(\frac{AH.BC}{2}\) (1)
\(S_{\Delta ABC}\)= \(\frac{AB.AC}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)
b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)
Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625
=> BC = 25
Ta có: AH.BC = AB.AC (cmt)
hay AH. 25 = 15.20
=> AH.25 = 300
=> AH = 300 : 25
=> AH = 12
c) chưa hc
a) ta có
ˆHBA+ˆHAB=900;ˆHAB+ˆHAF=900⇒ˆHBA=ˆHAF(1)HBA^+HAB^=900;HAB^+HAF^=900⇒HBA^=HAF^(1)
ˆBHE+ˆEHA=900;ˆEHA+ˆFHA=900⇒ˆBHE=ˆFHA(2)BHE^+EHA^=900;EHA^+FHA^=900⇒BHE^=FHA^(2)
xét △BEH và △AFH có
(1) và (2)
⇒ △BEH ~ △AFH(g - g)
b) xét △AHB và △CAB có
ˆH=ˆA=900;ˆBH^=A^=900;B^ chung
⇒ △AHB ~ △CAB (g - g)
⇒BHBA=AHAC⇒BHAH=ABAC⇒BHBA=AHAC⇒BHAH=ABAC
từ câu a ⇒ EHFH=BHAHEHFH=BHAH
⇒ ABAC=EHFH⇒ABEH=ACFH(3)ABAC=EHFH⇒ABEH=ACFH(3)
xét △CAB và △FHE có
(3); ˆA=ˆH=900A^=H^=900
⇒ △CAB ~ △FHE (g - g)
⇒ ABHE=BCEF⇒AB.EF=HE.BCABHE=BCEF⇒AB.EF=HE.BC ⇒ đpcm