K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

A B C H 15 9

Xét tam giác ABC vuông tại A, đường cao AH 

*Áp dụng hệ thức  : 

\(AC^2=HC.BC\Rightarrow BC=\frac{AC^2}{HC}=\frac{225}{9}=25\)cm 

\(\Rightarrow BH=BC-HC=25-9=16\)cm 

*Áp dụng hệ thức :

\(AB^2=BH.BC=16.25=400\Rightarrow AB=20\)cm 

*Áp dugj hệ thức :

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{400}+\frac{1}{225}\)

\(\Rightarrow AH^2=400+225=625\Rightarrow AH=25\)cm 

4 tháng 5 2021

Giúp mình với 

22 tháng 10 2021

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay \(AC=3\sqrt{11}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{5}{6}\)

\(\Leftrightarrow\widehat{B}=56^0\)

hay \(\widehat{C}=34^0\)

28 tháng 12 2021

Giúp mik câu c với ạ

 

28 tháng 12 2021

a: BC=15cm

AH=7,2cm

25 tháng 10 2021

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\)

\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)

AC=20(cm)

\(\widehat{B}\simeq37^0\)

\(\widehat{C}\simeq53^0\)

25 tháng 10 2021

Áp dụng HTL:

\(CH=\dfrac{AH^2}{BH}=16\left(cm\right)\Rightarrow BC=BH+BC=25\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=15\left(cm\right)\\AC=\sqrt{CH\cdot BC}=20\left(cm\right)\end{matrix}\right.\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{20}{25}=\dfrac{4}{5}\approx53^0\Rightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)

2 tháng 11 2021

a, \(AB=\sqrt{BC^2-AC^2}=10\sqrt{5}\left(cm\right)\)

\(\cos B=\dfrac{AC}{BC}=\dfrac{2}{3}\approx48^0\Rightarrow\widehat{B}\approx48^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx90^0-48^0=42^0\)

b, Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{20\sqrt{5}}{30}\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{40}{3}\left(cm\right)\end{matrix}\right.\)

13 tháng 10 2021

 

1542966759_7.jpg

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

16 tháng 12 2021

\(a,BC=BH+HC=25(cm)\\ AB=\sqrt{BH.BC}=15(cm)\\ AC=\sqrt{CH.BC}=20(cm)\\ AH=\dfrac{AB.AC}{BC}=12(cm)\\ b,AI \text{ là đường nào?}\)