Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chug
Do đó: ΔABC∼ΔHBA
Suy ra: BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
b: Xét tứ giác ACDH có
M là trung điểm của AD
M là trung điểm của CH
Do đó: ACDH là hình bình hành
Suy ra: AH//DC

a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng vơi ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha
~ Hok tốt ~
#JH
a)
Xét tam giác ABC ta có
\(AB^2+AC^2=BC^2\)(định lý py ta go)
144 + 256 = BC2
400 = BC2
BC = 20 ( cm )
Xét tam giác ABC có
BD là đường phân giác của tam giác
nên AD/DC = AB/BC = 16/20 = 4/5
có AD + DC = AC = 16
dễ tìm ra AD = 64/9 (cm)
DC = 80/9 (cm)
b) xét 2 tam giác HBA và ABC
có góc ABC chung
2 góc AHB và CAB bằng nhau cùng bằng 90 độ
nên 2 tam giác HAB và ABC đồng dạng với nhau
c)
có 2 tam giác HAB và ABC đồng dạng với nhau
nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)
d)
có E là hình chiếu của của C trên BD
nên \(CE\perp BD\)
suy ra \(\widehat{BEC}=90^0\)
xét 2 tam giác BHK và BEC
có \(\widehat{BHK}=\widehat{BEC}=90^0\)
\(\widehat{CEB}\)chung
nên 2 tam giác BHK và BEC đồng dạng với nhau
suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)
có 2 tam giác HAB và ABC đồng dạng với nhau
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)
từ (1) và (2) suy ra
\(AB^2=BK\cdot BE\)
a) Xét tam giác ABC và tan giác HBA, ta có:
ˆBACBAC^=ˆBHABHA^(=90o)(=90o)
ˆBB^là góc chung
=> Tam giác ABC ~ tam giác HBA (g-g)
=>ABBHABBH=BCBABCBA (tỉ số tương ứng)
Hay ABBHABBH=BCABBCAB
<=> AB . AB = BC . BH
<=> AB2AB2= BC . BH
b) Xét tam giác ABC và tam giác HAC, ta có:
ˆBACBAC^=ˆAHCAHC^(=90o)(=90o)
ˆCC^là góc chung
=> Tam giác ABC ~ tam giác HAC (g-g)
Mà tam giác ABC ~ tam giác HBA (cmt)
=> Tam giác HBA ~ tam giác HAC (tính chất)
=> HBHAHBHA=HAHCHAHC(tỉ số tương ứng)
Hay HBAHHBAH=AHHCAHHC
<=> AH . AH = HB . HC
<=> AH2AH2= HB . HC
c) Tam giac ABC vuong tai A co:
BC2BC2= AB2AB2+AC2AC2(Pytago)
BC2BC2= 6262+8282
BC2BC2= 100
<=> BC =√100100(BC > 0)
<=> BC = 10 (cm)
Mat khac: BC = HB + HC
Tam giac HAC vuong tai H co:
AC2AC2=AH2AH2+HC2HC2(Pytago)
8282= HB . HC + HC2HC2
64 = HC (HB + HC)
64 = HC . BC
64 = HC . 10
=> HC = 6,4 (cm)
Ma BC = HB + HC
=> 10 = HB + 6,4
<=> HB = 3,6 (cm)
Ta co:
AH2AH2= HB . HC (cmt)
=>AH2AH2= 3,6 . 6,4
<=> AH2AH2= 23,04
<=> AH = √23,0423,04(AH > 0)
<=> AH = 4,8 (cm)