Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
b: góc B=2/3*90=60 độ
góc C=90-60=30 độ
Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
góc B=60 độ
=>ΔABD đều
=>góc DAB=60 độ
=>góc DAC=góc DCA
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>DH=DE
a, xét tam giác AHD và tam giác AHB có : AH hcung
góc AHD = góc AHB = 90
HD = HB (Gt)
=> tam giác HAB = tam giác HAD (2cgv)
=> AD = AB (Đn)
=> tam giác ABD cân tại (Đn)
có góc BAC = 60 (gt)
=> tam giác ABD đều
b, tam giác ABC vuông tại A (gt)
=> góc ABC + góc ACB = 90 (Đl)
góc ABC = 60 (gt)
=> góc ACB = 30 mà tam giác ABC vuông tại A (gt)
=> AB = BC/2 (đl)
có AB = AD = BD do tam giác ABD đều (câu a)
=> AD = BD = BC/2
BD + CB = BC
=> AD = DC = BC/2
Ta có hình vẽ:
B A C E D
a) Xét \(\Delta ABH\)và \(\Delta ADH\):
BH=DH(gt)
\(\widehat{AHB}=\widehat{AHD}=90^o\)
AH: cạnh chung
\(\Rightarrow\Delta AHB=\Delta AHD\left(c-g-c\right)\)
\(\Rightarrow AB=AD\)(2 cạnh tương ứng)(1)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o;\widehat{C}=30^o\)
\(\Rightarrow\widehat{B}=60^o\left(2\right)\)
Từ (1) và (2) => \(\Delta ABD\)đều
=> Đpcm
b)Ta có: \(\widehat{BAD}+\widehat{DAC}=90^o\)
\(\Rightarrow60^o+\widehat{DAC}=90^o\)
\(\Rightarrow\widehat{DAC}=30^o=\widehat{DCA}\)
=> \(\Delta ADC\)cân tại D
=> DA=DC
Xét \(\Delta ADH\)và \(\Delta CDE\):
DA=DC(cmt)
\(\widehat{AHD}=\widehat{CED}=90^o\)
\(\widehat{ADH}=\widehat{CDE}\)(đđ)
\(\Rightarrow\Delta AHD=\Delta CED\left(ch-gn\right)\)
=> AH=EC (2 canh tương ứng)
=> Đpcm
c) Ta có: \(\Delta AHD=\Delta CED\)(cm câu a)
=> HD=DE
=> \(\Delta HDE\)cân tại D
Xét \(\Delta ADC\)cân tại D có \(\widehat{DAC}=\widehat{DCA}=30^o\)
\(\Rightarrow\widehat{ADC}=120^o\)
\(\Rightarrow\widehat{HDE}=\widehat{ADC}=120^o\)(đđ)
\(\Rightarrow\widehat{DHE}=\widehat{DEH}=30^o\)
\(\Rightarrow\widehat{EHD}=\widehat{DCA}=30^o\)
Mà 2 góc này ở vị trí so le trong
=> HE//AC
=> ĐPCM
a, Xét tg ABH và tg ADH có :
BH=DH(gt)
AH chung
∠AHB=∠AHC (=90 độ)
=> tg ABH = tg ADH ( c.g.c)
=> AB = AB ( 2 cạnh tương ứng )
=> tg ABD cân (1)
Trong tg ABC có : ∠A+∠B+∠C= 180 độ
=> 1/2∠B+∠B=90 độ
=> ∠B= 60 độ (2)
Từ (1) , (2) => tg ABD là tg đều
b, +) Ta có : ∠BAD + ∠DAC = ∠BAC
=> 60 độ + ∠DAC = 90 độ
=>∠DAC = 30 độ
Lại có : ∠DCA = 90 độ - 60 độ = 30 độ (3)
=> ∠DAC = ∠DCA ( =30 độ )
=> tg DAC cân tại D => AD=CD
+) Xét tg HDA và tg EDC có :
AD=CD(cmt)
∠HDA= ∠EDC ( đđ')
=> tg HDA = tg EDC ( ch-gn)
=> DH=DE( 2 cạnh tương ứng )
=> tg DHE cân tại D
+)Lại có : ∠ADC= 180 độ - ∠DAC -∠DCA= 120 độ
=>∠ADC=∠HDE(=120 độ)
=> ∠DHE = 180 - 120/2 = 30 (4)
Từ (3),(4)=> ∠DCA= ∠DHE
Mà chúng ở vị trí SLT => HE//AC
Nhok Ngịch Ngợm Cậu ghi đề rõ ràng cho mình với?
Tại sao DA=DC được nhỉ
Bác xem lại đề em với ạ~
Cảm ơn:)
Nhok Ngịch Ngợm
Nếu đề đúng như của Bác ghi trên thì...
Đề cho CE\(\perp\)AD để thừa à
Cái cần chứng minh có liên quan gì đâu???
Em thấy đề này thiếu hoặc sai Bác ạ~
Mong Bác xem lại:((