K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

Do đó: ΔAHB=ΔAHD

b: \(\widehat{BAH}+\widehat{ABC}=90^0\)(ΔHBA vuông tại H)

\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)

Do đó: \(\widehat{BAH}=\widehat{ACB}\)

 

17 tháng 6 2024

a) xét ΔAHB và ΔAHD, có:

AH là cạnh chung

\(\widehat{BHA}=\widehat{DHA}=90^0\)

HB = HD (giả thiết)

-> ΔAHB = ΔAHD (c-g-c)

b) xét ΔBHA có:

\(\widehat{HAB}=\widehat{BHA}-\widehat{B}\) (1)

xét ΔACB có:

\(\widehat{BCA}=\widehat{BAC}-\widehat{B}\) (2)

từ (1) (2) => \(\widehat{BAH}=\widehat{ACB}\) (vì \(\widehat{BHA}=\widehat{BAC}\))

c) trên đề ghi là điểm F mà xuống câu c thì lại là điểm E, vậy thì điểm F và điểm E là như nhau nghen

ta có: \(\widehat{HAD}=\widehat{AHD}-\widehat{HDA}\)

\(\widehat{FCD}=\widehat{DFC}-\widehat{FDC}\)

mà \(\widehat{AHD}=\widehat{CFD}=90^0\)

\(\widehat{HDA}=\widehat{FDC}\left(dd\right)\)

\(\Rightarrow\widehat{HAD}=\widehat{FCD}\) (3)

vì ΔHAB = ΔHAD (câu a), nên \(\widehat{HAB}=\widehat{HAD}\) (2 góc tương ứng) (4)

mà \(\widehat{HAB}=\widehat{HCA}\) (câu b) (5)

từ (3) (4) (5) => \(\widehat{DCA}=\widehat{DCF}\)

=> CB là tia phân giác của góc ACF

d) vì góc DAC = góc DCA nên tam giác DAC là tam giác cân

=> DA = DC

xét tam giác VUÔNG HDA và tam giác VUÔNG FDC, có:

DA = DC (cmt) (8)

góc HDA  = góc FDC (đối đỉnh)

=> tam giác HDA = tam giác FDC (ch-gn)

=> DH = DF (6)

vì góc HAC = góc FCA , nên tam giác AKC là tam giác cân

=> KA = KC (7)

từ (6) (7) (8) => KD là đường trung trực của tam giá KAC

=> KD vuông góc với AC

mà AB vuông góc với AC

nên KD // AB (đpcm)

e) xét tam giác AFC có góc F là góc vuông

=> AC là cạnh lớn nhất

=> AC > CD

 

Đề 53:bài 2:Cho tam giác ABC vuông tại A,tia phân giác của góc ABC cắt AC ở D,E là điểm trên cạnh BC sao cho BE=BA.a) Chứng minh rằng tam giác ABD= tam giác EBDb) Chứng minh rằng DE=DCc) Gọi F là giao điểm của DE và AB.Chứng minh rằng DC=DF.Đề 54:bài 1:Cho tam giác ABC,D là trung điểm cạnh BC.Trên tia đối của DA lấy điểm E sao cho DE=DA.Chứng minh rằng:   a) Tam giác ABD= tam giác EDC ...
Đọc tiếp

Đề 53:

bài 2:Cho tam giác ABC vuông tại A,tia phân giác của góc ABC cắt AC ở D,E là điểm trên cạnh BC sao cho BE=BA.

a) Chứng minh rằng tam giác ABD= tam giác EBD

b) Chứng minh rằng DE=DC

c) Gọi F là giao điểm của DE và AB.Chứng minh rằng DC=DF.

Đề 54:

bài 1:Cho tam giác ABC,D là trung điểm cạnh BC.Trên tia đối của DA lấy điểm E sao cho DE=DA.

Chứng minh rằng:   a) Tam giác ABD= tam giác EDC

                                 b)AB//CE

                                 c) ABE^=ECA^

bài 2:Cho tam giác có A^=80độ.B^=40độ.Tia phân giác của góc C cắt AB tại D.Tính ACB^,ADC^.

Đề 56:

bài 1:Cho tam giác ABC vuông tại A(AB>AC).

a) Cho biết AB=8cm,BC=10cm.Tính AC

b) Gọi M là trung điểm của cạnh BC.Trên tia đối của MA lấy D sao cho MD=MA.Vẽ AH vuông góc BC tại H, trên tia đối của tia HA lấy E sao cho HE=HA.Chứng minh rằng: 

1.CD vuông góc AC        2.tam giác CAE cân        3.BD=CE                4. AE vuông góc ED

bài 2:Cho tam giác ABC cân tại A.Vẽ AH vuông góc BC tại H,vẽ HD vuông góc AB tại D.HE vuông góc AC tại E.Chứng minh rằng:

a)BH=HC           b)BD=CE 

    Mình cần gấp, Làm ơn giúp mình!

0
BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.a) Chứng minh: Tam giác ABM = tam giác ACM.b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.Chứng minh: BH = CK.c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.Chứng minh: Tam giác IBM cân.BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.a) Tính độ dài cạnh AC.b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED...
Đọc tiếp

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.

a) Chứng minh: Tam giác ABM = tam giác ACM.

b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.

Chứng minh: BH = CK.

c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.

Chứng minh: Tam giác IBM cân.

BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.

a) Tính độ dài cạnh AC.

b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.

Chứng minh: DC = DF.

c) Chứng minh: AE song song FC. ( AE // FC )

BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.

a) Chứng minh: Tam giác ABD = tam giác ACE.

b) Chứng minh: Tam giác AED cân.

c) Chứng minh: AH là đường trung trực của ED.

b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.

Chứng minh: ECB^ = DKC^.

#helpme

#mainopbai

 

 

5
24 tháng 4 2017

Bài 3

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC( vì tam giác ABC cân tại A)

Góc A chung

=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)

b) Có tam giác ABD= tam giác ACE( theo câu a)

=> AE=AD ( 2 cạnh tương ứng)

=> Tam giác AED cân tại A

c) Xét các tam giác vuông AEH và ADH có

Cạnh huyền AH chung

AE=AD

=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)

=>HE=HD

Ta có AE=AD và HE=HD hay AH là đường trung trực của ED

d) Ta có AB=AC, AE=AD

=>AB-AE=AC-AD

=>EB=DC

Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có

BD=DK

EB=Dc

=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)

=> Góc ECB= góc DEC ( 2 góc tương ứng)

24 tháng 4 2017

Bài 1:

Xét tam giác ABM và tam giác ACM có:

AB=AC(tam giác ABC cân tại A)

BM=MC(gt)

AM cạnh chung

Suy ra tam giác ABM= tam giác ACM (c-c-c)

b) Xét hai tam giác vuông MBH và MCK có:

BM=MC(gt)

góc ABC=góc ACB (tam giác ABC cân tại A)

Suy ra tam giác MBH= tam giác MCK (ch-gn)

Suy ra BH=CK

c) MK vuông góc AC (gt)

BP vuông góc AC (gt)

Suy ra MK sông song BD

Suy ra góc B1= góc M2 (đồng vị)

Mà M1=M2(Tam giác HBM= tam giác KCM)

Suy ra góc B1= góc M1

Suy ra tam giác IBM cân

xong bài 1 đẻ bài 2 mình nghĩ tiếp

30 tháng 4 2019

a, xét tam giác BMH và tam giác BDH có : BM chung

HM = HD (gt)

góc BHM = góc BHD = 90 

=> tam giác BMH = tam giác BDH (2cgv)

=> BM = BD (đn)

=> tam giác BDM cân tại B (đn)

b, tam giác BMH = tam giác BDH (câu a)

=> góc MBH = góc DBH (đn)

xét tam giác BMC và tam giác BDC có : BC chung

BM = BD (câu a)

=> tam giác BMC =  tam giác BMD (c - g - c)

=> góc BMC = góc BDC (đn)

10 tháng 2 2022

b1 

a) CM tam giác chứaHB và chứa HC = nhau

b) CM tam giác chứa 2 góc A = nhau

a: Xét ΔABD và ΔKBD có

BA=BK

góc ABD=góc KBD

BD chung

Do đó: ΔABD=ΔKBD

Suy ra: DA=DK

b: Ta có: ΔBAD=ΔBKD

nên góc BKD=góc BAD=90 độ

=>DK vuông góc với BC

=>DK//AH

21 tháng 7 2019

a) Xét ΔABH và ΔADH, có:

HB = HD (gt)

góc AHB = góc AHD = 90o (gt)

AH: cạnh chung

Do đó: ΔABH =ΔADH (c - g - c )

=> AB = AD ( 2 cạnh t/ư)

Vậy ΔABD cân tại A ( 2 cạnh = nhau)

29 tháng 4 2019

a,xét hai tam giác HBM và HBD(có 2 góc H=90 độ)

Ta có:BH cạnh chung,HM=HD

suy ra tam giác HBM= tam giác HBD (cgv-cgv)

suy ra BM=BD (2 cạnh tương ứng)

xét tam giác BMD có BM=BD suy ra tam giác BMD cân tại B.

b,theo câu a góc MBC =góc DBC (2 góc tương ứng)

xét tam giác MBC và tam giác DBC

TA CÓ;BM=BD,góc MBC=DBC,BC cạnh chung

uy ra tam giác BMC= tam giác DBC(C-G-C)

suy ra góc BMC=BDC (2 góc tương ứng)

c,áp dụng định lý pytago

xét tam giác AHC có HC^2=AC^2-AH^2=10^2

suy ra HC =10

xét tam giác HMC có MH^2=MC^2-HC^2=CD^2-HC^2=56,25

suy ra MH=7,5

suy ra tam giác HMC có diện tích là 7,5*10/2=37,5

29 tháng 4 2019

a)Xét\(\Delta BMH\)\(\Delta BDH\)có:

BM là cạnh chung

\(\widehat{BHM}=\widehat{BHD}\left(=90^o\right)\)

MH=DH(GT)

Do đó:\(\Delta BMH=\text{​​}\text{​​}\Delta BDH\)(c-g-c)

\(\Rightarrow BM=BD\)(2 cạnh t/ứ)

Xét\(\Delta BDM\)có:\(BM=BD\left(cmt\right)\)

Do đó:\(\Delta BDM\)cân tại B(Định ngĩa\(\Delta\)cân)

b)Vì\(\Delta BMH=\text{​​}\text{​​}\Delta BDH\)(cm câu a) nên\(\widehat{MBH}=\widehat{DBH}\)(2 góc t/ứ)

Xét\(\Delta BMC\)\(\Delta BDC\)có:

BC là cạnh chung

\(\widehat{MBC}=\widehat{DBC}\left(cmt\right)\)

BM=BD(cm câu a)

Do đó:\(\Delta BMC=\Delta BDC\)(c-g-c)

\(\Rightarrow\widehat{BMC}=\widehat{BDC}\)(2 góc t/ứ)

c)Xét\(\Delta AHC\)có:\(AC^2=AH^2+HC^2\)

hay\(26^2=24^2+HC^2\)

\(\Rightarrow HC^2=26^2-24^2=676-576=100\)

\(\Rightarrow HC=\sqrt{100}=10\left(cm\right)\)

\(\Delta BMC=\Delta BDC\)nên\(MC=DC=12,5\left(cm\right)\)

Xét\(\Delta MCH\)có:\(MC^2=MH^2+CH^2\)
hay\(12,5^2=MH^2+10^2\)

\(\Rightarrow MH^2=12,5^2-10^2=156,25-100=56,25\)

\(\Rightarrow MH=\sqrt{56,25}=7,5\left(cm\right)\)

DT của\(\Delta MCH\)là:\(S_{\Delta MCH}=\frac{1}{2}.a.h=\frac{1}{2}.10.7,5=5.7,5=37,5\left(cm^2\right)\)

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

3 tháng 1 2019

a. Tính số đo góc HAB 

Trong tam giác HAB vuông tại H, ta có

- góc HAB = 180 độ - góc AHB - góc HBA = 180 độ - 90độ - 60độ = 30 độ (đpcm)

b. Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI=tam giác ADI. Từ đó suy ra AI vuông góc với HD

Xét tam giác DIA và tam giác HIA, có

- DI = HI (I là trung điểm DH)

- cạnh IA chung

- AD = AH (giả thiết)

=> tam giác DIA = tam giác HIA (cạnh - cạnh - cạnh) (đpcm)

Ta có AD = AH => tam giác ADH cân tại A

mà I là trung điểm DH

=> AI là trung trực, trung tuyến, phân giác của tam giác cân ADH

=> AI vuông góc HD(đpcm)

c. Tia AI cat cạnh HC tại điểm K. Chứng minh AB // KD

Xét tam giác ADK và tam giác AHK, có

- AD = AH (giả thiết)

- góc DAK = góc HAK (do AI là phân giác của tam giác cân DAH; mà A,I,K thẳng hàng => AK là phân giác góc DAH)

- cạnh AK chung

=> tam giác ADK = tam giác AHK

=> góc ADK = góc AHK

mà AHK = 90 độ

=> góc ADK = 90 độ

Ta có góc ADK = 90 độ 

=> KD vuông góc AC

mà AB cũng vuông góc AC (do tam giác vuông tại A)

=> AB // KD