Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)ACE và \(\Delta\)AKE có :
- CÂE = KÂE ( vì AE là phân giác )
- AE : cạnh chung
- Góc ACE = góc AKE ( = 90 độ )
\(\Rightarrow\)\(\Delta\)ACE = \(\Delta\)AKE ( cạnh huyền - góc nhọn )
\(\Rightarrow\)AC = AK ( hai cạnh tương ứng ) ( đpcm )
\(\Rightarrow\)A nằm trên đường trung trực của CK ( 1 )
Ta lại có : CE = KE ( vì \(\Delta\)ACE = \(\Delta\)AKE )
\(\Rightarrow\)E nằm trên đường trung trực của CK ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)AE\(\perp\)CK ( đpcm )
tự vẽ hình-câu a bạn kia làm r thì t làm câu b tiếp nha :)
b) Tam giác BEK có: góc B + góc E + góc K =180 độ
Tam giác KEA có : góc K+góc A+góc E=180 đôk
Mà góc EKA=BKE=90 độ, góc EBK=Góc KAE=30 độ
=> Góc BEK= góc KEA
Xét tam giác BEK và tam giác AEK, ta có:
EK là cạnh chung
góc EKA=BKE=90 độ
Góc BEK= góc KEA(cmt)
Vậy tam giác BEK = tam giác AEK(g-c-g)
=> AK=BK(cặp cạnh t/ứng)
BE=AE(cặp cạnh t/ứng)
c) Áp dụng định lí pytago vào tam giác vuông CEA. ta có:
EC2+CA2=AE2=> AE2-EC2=CA2=> AE2>CA2=> AE>CA
mà AE=BE(cmt) => BE>AC
câu d t chịu >:
a) Xét \(\Delta\)ADI và \(\Delta\)AHI có:
AD = AH (gt)
DI = HI (gt)
AI: cạnh chung
Do đó \(\Delta\)ADI = \(\Delta\)AHI (c.c.c)
b) Xét \(\Delta\)AHC vuông tại D và \(\Delta\)ABC vuông tại A có ^C chung nên ^HAC = ^B
\(\Delta\)ABC vuông tại A có ^C = 300 nên ^B = 600
Vậy ^HAC = 600
\(\Delta\)AHD có ^HAC = 600 và AH = AD nên \(\Delta\)AHD đều (đpcm)
c) \(\Delta\)ADI = \(\Delta\)AHI (cmt) suy ra ^DAI = ^HAI (hai góc tương ứng)
Xét \(\Delta\)ADK và \(\Delta\)AHK có:
AD = AH (gt)
^DAI = ^HAI (cmt)
AK: cạnh chung
Do đó \(\Delta\)ADK = \(\Delta\)AHK (c.g.c)
=> ^ADK = ^AHK = 900 (hai góc tương ứng)
Kết hợp với AB vuông góc AC suy ra AB//KD (đpcm)
d) Chứng minh được: \(\Delta\)AHB = \(\Delta\)EHK (c.g.c)
=> ^HAB = ^HEK => KE // AB
Khi đó qua K có hai đường thẳng KD, KE song song với AB (trái với tiên đề Ơ - cơ - lít)
Vậy KD trùng KE hay D,K,E thẳng hàng (đpcm)
Bn tham khảo ở đây nhé:
https://olm.vn/hoi-dap/question/22169.html
hok tốt!!
A B C H D K
a) Xét \(\Delta AHB\)và \(\Delta DBH\)có: \(\hept{\begin{cases}AH=BD\left(gt\right)\\\widehat{BHA}=\widehat{BDH}=90^0\\ChungAH\end{cases}\Rightarrow\Delta AHB=\Delta DBH\left(ch-gn\right)}\)
Vì tam giác ABC Vuông tại A
=> AB2 + AC2 = BC2 ( Định Lý Py-ta-go)
=> a2 + (a+1)2 =(a+2)2
=> a2 + a2 + 2a+1 = a2 + 2.2.a+ 22
=>a2 + 1 = 2a+4
=> a2 = 2a +3
=>a.(a-2)= 3
=> a thuộc Ư(3)={3;1}
(+) a=1 => a-2=3 =>a=5 (loại)
(+) a=3 => a-2=1 =>a=3 (Thỏa mãn)
Vậy a=3
Áp dụng định lý pytag cho tam giác vuông ABC
Ta có
\(AB^2+AC^2=BC^2\)
<=>\(a^2+\left(a+1\right)^2=\left(a+2\right)^2\)
<=>\(a^2+a^2+2a+1=a^2+4a+4\)
<=>\(a^2-2x-3=0\)
<=>\(\left(a+1\right)\left(a-3\right)=0\)
<=>\(a=-1;a=3\)