K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

Câu hỏi của đoàn kiều oanh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

23 tháng 12 2016

a) ta có: A + ABC + C =180° (đ/l)

=> 90° + ABC + 40° =180°

=> ABC = 180° -( 40°+ 90°)

=> ABC = 50°

Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°

Vậy ABD = 25°

b) xét tam giác BAD và tam giác BED có:

AB = BE ( GT )

BD chung

ABD = CBD ( GT )

=> tam giác BAD = tam giác BED ( c.g.c )

Ta có A = BED = 90° ( 2 góc t.ư)

=> DE vuông góc BC ( vì có 1 góc= 90° )

c) xét tam giác ABC và tam giác EBF có:

AB = BE ( GT )

B chung

A = E = 90°

=> tam giác ABC = tam giác EBF ( g.c.g )

d) ta có tam giác ABC = tam giác EBF ( theo c )

=> BC = BF ( 2 cạnh tương ứng)

Xét tam giác BKC và tam giác BKF có:

BC = BF ( GT )

BK chung

FBK = KBC ( GT )

=> tam giác BKC = tam giác BKF (c.g.c)

=> BKC = BKF ( 2 góc t.ư)

=> BKC + BKF = 180° ( 2 góc kề bù )

=> BKC = BKF = 180° : 2 = 90° = KFC

Vậy 3 điểm K,F,C thẳng hàng

Bn vẽ hình hộ mk nhé!

 

 

 

 

21 tháng 12 2016

A B C D 40

a) Áp dụng tc tổng 3 góc của 1 tg ta có:

góc BAC + ACB + ABC = 180 độ

=>90 + 40 + ABC = 180

=> ABC = 50 độ

mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )

 

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

29 tháng 7 2017

ahihi Dồ     ahihi đồ chó

30 tháng 7 2017

bn có bị j ko z

19 tháng 2 2020

A B C D E K I 1 2 1 2

Giả thiết\(\widehat{B_1}=\widehat{B_2};KI=IC;\widehat{A}=90^{\text{o}};AB=BE\)
Kết luận

a)  \(\Delta\)BDA =  \(\Delta\)BDE ; \(DE\perp BC\)

b)  \(\Delta\)ADK =  \(\Delta\)EDC ; KA = CE

c) B ; D ; I thẳng hàng

a) Xét : \(\Delta\)BDA và  \(\Delta\)BDE có : 

\(\hept{\begin{cases}\widehat{B_1}=\widehat{B_2}\\AB=AE\\AD\text{ chung}\end{cases}\Rightarrow\Delta ABD=\Delta BDE\left(c.g.c\right)}\)

=> \(\hept{\begin{cases}AD=DE\left(\text{cạnh tương ứng}\right)\\\widehat{BAD}=\widehat{DEB}=90^{\text{o}}\left(\text{góc tương ứng}\right)\end{cases}}\)

mà \(\widehat{BAD}=\widehat{DEB}=90^{\text{o}}\Rightarrow DE\perp BC\)

b) Xét  \(\Delta\)ADK và  \(\Delta\)EDC có : 

\(\hept{\begin{cases}\widehat{KAD}=\widehat{DEC\left(cmt\right)}\\AD=DE\left(cmt\right)\\\widehat{KDA}=\widehat{CDE}\left(\text{đối đỉnh}\right)\end{cases}}\)=>  \(\Delta\)ADK =   \(\Delta\)EDC => \(\hept{\begin{cases}AK=CE\left(\text{cạnh tương ứng}\right)\\\widehat{DKA}=\widehat{ECD}\left(\text{góc tương ứng}\right)\end{cases}}\) 

c) Lại có : AB = BE (gt) ; AK = CE (câu c)

=>AB + AK = BE + CE

=> BK =  BC

=>  \(\Delta\)BKC cân

=> \(\widehat{K}=\widehat{C}\Rightarrow\widehat{K}-\widehat{DKA}=\widehat{C}-\widehat{ECD}\Rightarrow\widehat{DKI}=\widehat{DCI}\)  =>  \(\Delta\)KCD cân => KD = DC  

Xét  \(\Delta\)KDI và  \(\Delta\)CDI có : 

\(\hept{\begin{cases}DI\text{ chung}\\KI=IC\left(\text{gt}\right)\\KD=DC\end{cases}}\)=> \(\Delta\)KDI và  \(\Delta\)CDI (c.c.c) => \(\widehat{I_1}=\widehat{I_2}\)(góc tương ứng)

mà \(\widehat{I_1}+\widehat{I_2}=180^{\text{o}}\Rightarrow\widehat{I_2}=90^{\text{o}}\Rightarrow DI\perp BC\left(1\right)\)

Xét  \(\Delta\)KBI và  \(\Delta\)CBI có :

\(\hept{\begin{cases}\widehat{B_1}=\widehat{B_2}\\BK=BC\\AI\text{ chung}\end{cases}}\) \(\Delta\)KBI và  \(\Delta\)CBI (c.g.c) => \(\widehat{I_1}=\widehat{I_2}=90^{\text{o}}\)(góc tương ứng) => \(AI\perp BC\left(2\right)\)

Từ (1) và (2) => A;D;I thẳng hàng